Cyclic-waiting systems

被引:2
作者
Lakatos L. [1 ]
机构
[1] Lorànd Eötvös University, Budapest
基金
匈牙利科学研究基金会;
关键词
Cyclic waiting; Retrial queue;
D O I
10.1007/s10559-010-9222-1
中图分类号
学科分类号
摘要
The paper analyzes a queuing system where customers are accepted for service either at the time of arrival (if the server if idle) or at the times that differ from it by intervals multiple of cycle time T. Formulas are derived to find the number of customers in the system, waiting time, and the existence condition for ergodic distribution. © 2010 Springer Science+Business Media, Inc.
引用
收藏
页码:477 / 484
页数:7
相关论文
共 15 条
[1]  
Lakatos L., On a simple continuous cyclic-waiting problem, Annales Univ. Sci. Budapest. Sect. Comp., 14, pp. 105-113, (1994)
[2]  
Lakatos L., On a cyclic-waiting queueing system, Theory of Stochastic Processes, 2, 18, pp. 176-180, (1996)
[3]  
Lakatos L., On a simple discrete cyclic-waiting queueing problem, J. Math. Sci. (New York), 92, 4, pp. 4031-4034, (1998)
[4]  
Lakatos L., A retrial system with time-limited tasks, Theory of Stochastic Processes, 8, 24, pp. 250-256, (2002)
[5]  
Lakatos L., A retrial queueing system with urgent customers, J. Math. Sci., 138, 1, pp. 5405-5409, (2006)
[6]  
Koba E.V., On a GI/ G /1 retrial queue with FCFS service discipline, Dop. NANU, 6, pp. 101-103, (2000)
[7]  
Koba E.V., Mikhalevich K.V., Comparing M/ G /1retrial queues with fast return from the orbit, Queues: Flows, Systems, Networks, Proc. Int. Conf. "modern Math. Methods of Telecommunication Networks [In Russian], pp. 136-138, (2003)
[8]  
Mykhalevych K.V., A comparison of a classical retrial M/G/1 queueing system and a Lakatos-type M/ G /1 cyclic-waiting time queueing system, Annales Univ. Sci. Budapest. Sect. Comp., 23, pp. 229-238, (2004)
[9]  
Karasz P., Special retrial systems with requests of two types, Theory of Stochastic Processes, 10, 26, pp. 51-56, (2004)
[10]  
Karasz P., A special discrete cyclic-waiting queuing system, Central European J. Oper. Res., 16, 4, pp. 391-406, (2008)