High-flow nasal cannula therapy, factors affecting effective inspired oxygen fraction: an experimental adult bench model

被引:0
作者
Frédéric Duprez
C. de Terwangne
V. Bellemans
W. Poncin
G. Reychler
A. Sorgente
G. Cuvelier
S. Mashayekhi
X. Wittebole
机构
[1] Centre Hospitalier Epicura,Department of Intensive Care
[2] Cliniques Universitaires Saint-Luc,Department of Geriatric Medicine
[3] Université Catholique de Louvain,Department of Internal Medicine
[4] Centre Hospitalier Epicura,Department of Cardiology
[5] Condorcet School,Laboratory of Respiratory Physiology
[6] UCLouvain,Département of Intensive Care
来源
Journal of Clinical Monitoring and Computing | 2022年 / 36卷
关键词
Oxygenation through High Flow Delivery Systems; HFO; HFNC; Inspiratory flow; Minute ventilation; Effective inspired oxygen fraction; Double trunk mask;
D O I
暂无
中图分类号
学科分类号
摘要
Oxygenation through High Flow Delivery Systems (HFO) is described as capable of delivering accurate FiO2. Meanwhile, peak inspiratory flow V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} ) of patients with acute hypoxemic respiratory failure can reach up to 120 L/min, largely exceeding HFO flow. Currently, very few data on the reliability of HFO devices at these high V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} are available. We sought to evaluate factors affecting oxygenation while using HFO systems at high V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} in a bench study. Spontaneous breathing was generated with a mechanical test lung connected to a mechanical ventilator Servo-i®, set to volume control mode. Gas flow from a HFO device was delivered to the test lung. The influence on effective inspired oxygen fraction of three parameters (FiO2 0.6, 0.8, and 1, V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} from 28 to 98.1 L/min, and HFO Gas Flows from 40 to 60 L/min) were analyzed and are reported. The present bench study demonstrates that during HFO treatment, measured FiO2 in the lung does not equal set FiO2 on the device. The substance of this variation (ΔFiO2) is tightly correlated to V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} (Pearson’s coefficient of 0.94, p-value < 0.001). Additionally, set FiO2 and Flow at HFO device appear to significatively affect ΔFiO2 as well (p-values < 0.001, adjusted to V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} ). The result of multivariate linear regression indicates predictors (V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} , Flow and set FiO2) to explain 92% of the variance of delta FiO2 through K-Fold Cross Validation. Moreover, adjunction of a dead space in the breathing circuit significantly decreased ΔFiO2 (p < 0.01). The present bench study did expose a weakness of HFO devices in reliability of delivering accurate FIO2 at high V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} as well as, to a lesser extent, at V˙I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{{\text{I}}}$$\end{document} below equivalent set HFO Flows. Moreover, set HFO flow and set FIO2 did influence the variability of effective inspired oxygen fraction. The adjunction of a dead space in the experimental set-up significantly amended this variability and should thus be further studied in order to improve success rate of HFO therapy.
引用
收藏
页码:1441 / 1448
页数:7
相关论文
共 65 条
[1]  
Ward JJ(2013)High-flow oxygen administration by nasal cannula for adult and perinatal patients Respir Care. 58 98-120
[2]  
Nishimura M(2015)High-flow nasal cannula oxygen therapy in adults J Intensive Care. 3 1-8
[3]  
Chikata Y(2017)FIO2 in an adult model simulating high-flow nasal cannula therapy Respir Care. 62 193-198
[4]  
Onodera M(2016)High-flow nasal cannula oxygen therapy in adults: physiological benefits, indication, clinical benefits, and adverse effects Respir Care. 63 598-607
[5]  
Oto J(1985)Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure Anesthesiology 201 1299-1300
[6]  
Nishimura M(2020)COVID-19 does not lead to a "Typical" acute respiratory distress syndrome Am J Respir Crit Care Med. 29 16-1118
[7]  
Nishimura M(2021)Pre-hospital critical care management of severe hypoxemia in victims of Covid-19: a case series Scand J Trauma Resusc Emerg Med. 172 1112-10
[8]  
Katz JA(2005)Physiologic effects of noninvasive ventilation during acute lung injury Am J Respir Crit Care Med. 22 707-2533
[9]  
Marks JD(1996)The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine Intensive Care Med. 307 2526-1376
[10]  
Gattinoni L(2012)Acute respiratory distress syndrome: the Berlin Definition JAMA 199 1368-914