Frobenius objects in the category of relations

被引:0
|
作者
Rajan Amit Mehta
Ruoqi Zhang
机构
[1] Smith College,Department of Mathematics and Statistics
来源
Letters in Mathematical Physics | 2020年 / 110卷
关键词
Category of relations; Cohomology; Frobenius algebra; Groupoid; Simplicial set; Topological quantum field theory; 18B10; 18B40; 18D35; 18G30; 20L05; 57R56;
D O I
暂无
中图分类号
学科分类号
摘要
We give a characterization, in terms of simplicial sets, of Frobenius objects in the category of relations. This result generalizes a result of Heunen, Contreras, and Cattaneo showing that special dagger Frobenius objects in the category of relations are in correspondence with groupoids. As an additional example, we construct a Frobenius object in the category of relations whose elements are certain cohomology classes in a compact oriented Riemannian manifold.
引用
收藏
页码:1941 / 1959
页数:18
相关论文
共 50 条
  • [1] Frobenius objects in the category of relations
    Mehta, Rajan Amit
    Zhang, Ruoqi
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (07) : 1941 - 1959
  • [2] Frobenius objects in the category of spans
    Contreras, Ivan
    Keller, Molly
    Mehta, Rajan Amit
    REVIEWS IN MATHEMATICAL PHYSICS, 2022, 34 (10)
  • [3] SPHERES AS FROBENIUS OBJECTS
    Baralic, Djordje
    Petric, Zoran
    Telebakovic, Sonja
    THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 : 691 - 726
  • [4] On the Frobenius twist in the category of unstable modules
    Par The Cuong Nguyen
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2019, 147 (01): : 49 - 90
  • [5] FROBENIUS OBJECTS IN CARTESIAN BICATEGORIES
    Walters, R. F. C.
    Wood, R. J.
    THEORY AND APPLICATIONS OF CATEGORIES, 2008, 20 : 25 - 47
  • [6] On the levels of maps and topological realization of objects in a triangulated category
    Kuribayashi, Katsuhiko
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (04) : 752 - 765
  • [7] On (co)homology of Frobenius Poisson algebras
    Zhu, Can
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    JOURNAL OF K-THEORY, 2014, 14 (02) : 371 - 386
  • [8] A note on duality, Frobenius algebras and TQFTs
    Ionescu, LM
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (08) : 999 - 1006
  • [9] Frobenius manifolds and Frobenius algebra-valued integrable systems
    Ian A. B. Strachan
    Dafeng Zuo
    Letters in Mathematical Physics, 2017, 107 : 997 - 1026
  • [10] Rewriting with Frobenius
    Bonchi, Filippo
    Gadducci, Fabio
    Kissinger, Aleks
    Sobocinski, Pawel
    Zanasi, Fabio
    LICS'18: PROCEEDINGS OF THE 33RD ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, 2018, : 165 - 174