Growth and recurrence of stationary random walks

被引:0
作者
Gernot Greschonig
Klaus Schmidt
机构
[1] Mathematics Institute,
[2] University of Vienna,undefined
[3] Strudlhofgasse 4,undefined
[4] A-1090 Vienna,undefined
[5] Austria. e-mail: gernot.greschonig@univie.ac.at,undefined
[6] Mathematics Institute,undefined
[7] University of Vienna,undefined
[8] Strudlhofgasse 4,undefined
[9] A-1090 Vienna,undefined
[10] Austria and Erwin Schrödinger Institute for Mathematical Physics,undefined
[11] Boltzmanngasse 9,undefined
[12] A-1090 Vienna,undefined
[13] Austria. e-mail: klaus.schmidt@univie.ac.at,undefined
来源
Probability Theory and Related Fields | 2003年 / 125卷
关键词
Real Number; Stochastic Process; Probability Measure; Random Walk; Limit Point;
D O I
暂无
中图分类号
学科分类号
摘要
 Let (Xn,n≥1) be a real-valued ergodic stationary stochastic process, and let (Yn=X1+…+Xn,n≥1) be the associated random walk. We prove the following: if the sequence of distributions of the random variables Yn/n,n≥1, is uniformly tight (or, more generally, does not have the zero measure as a vague limit point), then there exists a real number c such that the random walk (Yn−nc,n≥1) is recurrent. If this sequence of distributions converges to a probability measure ρ on ℝ (or, more generally, has a nonzero limit ρ in the vague topology), then (Yn−nc,n≥1) is recurrent for ρ−a.e.cℝ.
引用
收藏
页码:266 / 270
页数:4
相关论文
empty
未找到相关数据