A stable and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-conforming divergence-free finite element pair for the Stokes problem using isoparametric mappings

被引:0
作者
Michael Neilan
M. Baris Otus
机构
[1] University of Pittsburgh,Department of Mathematics
关键词
Finite element; Stokes; Divergence-free; Isoparametric; 65N30; 65N12;
D O I
10.1007/s10092-023-00531-7
中图分类号
学科分类号
摘要
This paper expands the isoparametric framework to construct a stable, H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-conforming, and divergence-free method for the Stokes problem in two dimensions based on the Scott-Vogelius pair on Clough-Tocher splits. The pressure space is defined through composition, whereas the velocity space is constructed via a new divergence-preserving mapping that imposes full continuity across shared edges in the isoparametric mesh. Our construction is motivated by operators and spaces found in isoparametric C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} finite element methods. We prove the method is stable, pressure-robust, and has optimal order convergence. Numerical experiments are provided which confirm the theoretical results.
引用
收藏
相关论文
共 27 条
  • [11] Linke A(1985)Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials RAIRO Modél. Math. Anal. Numér. 19 111-143
  • [12] Merdon C(2005)A new family of stable mixed finite elements for the 3D Stokes equations Math. Comp. 74 543-554
  • [13] Neilan M(2011)Divergence-free finite elements on tetrahedral grids for Math. Comp. 80 669-695
  • [14] Rebholz LG(2009)A family of SIAM J. Numer. Anal. 47 2090-2107
  • [15] Lederer PL(1973) divergence-free finite elements on rectangular grids SIAM J. Numer. Anal 10 229-240
  • [16] Lehrenfeld C(undefined)Curved elements in the finite element method. I undefined undefined undefined-undefined
  • [17] Schöberl J(undefined)undefined undefined undefined undefined-undefined
  • [18] Lenoir M(undefined)undefined undefined undefined undefined-undefined
  • [19] Mansfield L(undefined)undefined undefined undefined undefined-undefined
  • [20] Neilan M(undefined)undefined undefined undefined undefined-undefined