A stable and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-conforming divergence-free finite element pair for the Stokes problem using isoparametric mappings

被引:0
作者
Michael Neilan
M. Baris Otus
机构
[1] University of Pittsburgh,Department of Mathematics
关键词
Finite element; Stokes; Divergence-free; Isoparametric; 65N30; 65N12;
D O I
10.1007/s10092-023-00531-7
中图分类号
学科分类号
摘要
This paper expands the isoparametric framework to construct a stable, H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-conforming, and divergence-free method for the Stokes problem in two dimensions based on the Scott-Vogelius pair on Clough-Tocher splits. The pressure space is defined through composition, whereas the velocity space is constructed via a new divergence-preserving mapping that imposes full continuity across shared edges in the isoparametric mesh. Our construction is motivated by operators and spaces found in isoparametric C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} finite element methods. We prove the method is stable, pressure-robust, and has optimal order convergence. Numerical experiments are provided which confirm the theoretical results.
引用
收藏
相关论文
共 27 条
  • [1] Bernardi C(1989)Optimal finite-element interpolation on curved domains SIAM J. Numer. Anal. 26 1212-1240
  • [2] Birkhoff G(1971)Tricubic interpolation in triangles Proc. Nat. Acad. Sci. U.S.A. 68 1162-1164
  • [3] Bonito Andrea(2020)A divergence-conforming finite element method for the surface stokes equation SIAM J. Numer. Anal. 58 2764-2798
  • [4] Demlow Alan(1972)Interpolation theory over curved elements, with applications to finite element methods Comput. Methods Appl. Mech. Eng 1 217-249
  • [5] Licht Martin(2014)Conforming and divergence-free Stokes elements on general triangular meshes Math. Comp. 83 15-36
  • [6] Ciarlet PG(2017)On the divergence constraint in mixed finite element methods for incompressible flows SIAM Rev. 59 492-544
  • [7] Raviart P-A(2020)Divergence-free tangential finite element methods for incompressible flows on surfaces Int. J. Numer. Methods. Eng. 121 2503-2533
  • [8] Guzmán J(1986)Optimal isoparametric finite elements and error estimates for domains involving curved boundaries SIAM J. Numer. Anal. 23 562-580
  • [9] Neilan M(1978)A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains Mathe. Comput. 32 135-142
  • [10] John V(2021)Divergence-free Scott-Vogelius elements on curved domains SIAM J. Numer. Anal. 59 1090-1116