Quantum Hypothesis Testing for Gaussian States: Quantum Analogues of χ2, t-, and F-Tests

被引:0
作者
Wataru Kumagai
Masahito Hayashi
机构
[1] Tohoku University,Graduate School of Information Sciences
[2] Nagoya University,Graduate School of Mathematics
[3] National University of Singapore,Centre for Quantum Technologies
来源
Communications in Mathematical Physics | 2013年 / 318卷
关键词
Nuisance Parameter; Gaussian State; Optimal Test; Number Parameter; Hypothesis Testing Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider quantum counterparts of testing problems for which the optimal tests are the χ2, t-, and F-tests. These quantum counterparts are formulated as quantum hypothesis testing problems concerning Gaussian state families, and they contain nuisance parameters, which have group symmetry. The quantum Hunt-Stein theorem removes some of these nuisance parameters, but other difficulties remain. In order to remove them, we combine the quantum Hunt-Stein theorem and other reduction methods to establish a general reduction theorem that reduces a complicated quantum hypothesis testing problem to a fundamental quantum hypothesis testing problem. Using these methods, we derive quantum counterparts of the χ2, t-, and F-tests as optimal tests in the respective settings.
引用
收藏
页码:535 / 574
页数:39
相关论文
共 56 条
  • [1] Aspachs M.(2009)Phase estimation for thermal Gaussian states Phys. Rev. A 79 033834-283
  • [2] Calsamiglia J.(2007)Discriminating states: the quantum Chernoff bound Phys. Rev. Lett. 98 160501-795
  • [3] Munoz-Tapia R.(2008)Asymptotic Error Rates in Quantum Hypothesis Testing Commun. Math. Phys. 279 251-128
  • [4] Bagan E.(2006)Optimal full estimation of qubit mixed states Phys. Rev. A 73 032301-2367
  • [5] Audenaert K.M.R.(1982)Minimax measurements in a general statistical decision theory Theor. Prob. Appl. 26 787-379
  • [6] Calsamiglia J.(1981)Amenability: A Survey for Statistical Applications of Hunt-Stein and Related Conditions on Groups Z. Wahr. verw. Geb. 57 103-652
  • [7] Masanes L.l.(1997)An unbiased test for the bioequivalence problem Ann. Stat. 25 2345-0773
  • [8] Munoz-Tapia R.(2010)Quantum U-statistics J. Math. Phys. 51 102202-14446
  • [9] Acin A.(2007)Local asymptotic normality in quantum statistics Commun. Math. Phys. 276 341-4655
  • [10] Bagan E.(2009)Local asymptotic normality for finite dimensional quantum systems Commun. Math. Phys. 289 597-400