Indices of electromyographic activity and the “slow” component of oxygen uptake kinetics during high-intensity knee-extension exercise in humans

被引:0
|
作者
Stephen W. Garland
Wen Wang
Susan A. Ward
机构
[1] Baltic Business Centre,English Institute of Sport—North East
[2] Queen Mary,Medical Engineering Division, Department of Engineering
[3] University of London,Institute of Membrane and Systems Biology
[4] University of Leeds,undefined
来源
European Journal of Applied Physiology | 2006年 / 97卷
关键词
Electromyography; Frequency analysis; Oxygen uptake kinetics; Muscle fibre type; Phase 2 time constant;
D O I
暂无
中图分类号
学科分类号
摘要
The control of pulmonary oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{{V}}\hbox{O}_{2})$$\end{document} kinetics above the lactate threshold (LT) is complex and controversial. Above LT, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} for square-wave exercise is greater than predicted from the sub-LT \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document}–WR relationship, reflecting the contribution of an additional “slow” component \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{{V}}\hbox{O}_{{2}\,\hbox{sc}}).$$\end{document} Investigators have argued for a contribution to this slow component from the recruitment of fast-twitch muscle fibres, which are less aerobically efficient than slow-twitch fibres. Six healthy subjects performed a rapid-incremental bilateral knee-extension exercise test to the limit of tolerance for the estimation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}\,{\rm peak}},$$\end{document} ventilatory threshold (VT), and the difference between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}{\rm peak}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} at VT (Δ). Subjects then completed three repetitions of square-wave exercise at 30% of VT for 10 min (moderate intensity), and at VT + 25%Δ (heavy intensity) for 20 min. Pulmonary gas exchange was measured breath-by-breath. Surface EMG was recorded from m. rectus femoris; integrated EMG (IEMG) and mean power frequency (MPF) were derived for successive contractions. In comparison to moderate-intensity exercise, the phase 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} kinetics in heavy exercise were marginally slower than for moderate-intensity exercise (time constant (± SD) 25 ± 9 and 22 ± 10 s, respectively; NS), with a discernible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}\,\hbox{sc}}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} difference between minutes 6 and 3 of exercise: 74 ± 21 and 0 ± 20 ml min−1, respectively). However, there was no significant change in IEMG or MPF, either in the moderate domain or in the heavy domain over the period when the slow component was manifest. These observations argue against an appreciable preferential recruitment of fast-twitch units with high force-generating characteristics and fast sarcolemmal conduction velocities in concert with the development of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} slow component during heavy-intensity knee-extensor exercise. The underlying mechanism(s) remains to be resolved.
引用
收藏
页码:413 / 423
页数:10
相关论文
共 50 条
  • [41] Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans
    Krustrup, P.
    Jones, A. M.
    Wilkerson, D. P.
    Calbet, J. A. L.
    Bangsbo, J.
    JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (08): : 1843 - 1856
  • [42] Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans
    Gerbino, A
    Ward, SA
    Whipp, BJ
    JOURNAL OF APPLIED PHYSIOLOGY, 1996, 80 (01) : 99 - 107
  • [43] Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter?
    Buchheit, Martin
    Hader, Karim
    Mendez-Villanueva, Alberto
    FRONTIERS IN PHYSIOLOGY, 2012, 3
  • [44] Attenuated relationship between cardiac output and oxygen uptake during high-intensity exercise
    Trinity, J. D.
    Lee, J. F.
    Pahnke, M. D.
    Beck, K. C.
    Coyle, E. F.
    ACTA PHYSIOLOGICA, 2012, 204 (03) : 362 - 370
  • [45] CONTRIBUTION OF EXERCISING LEGS TO THE SLOW COMPONENT OF OXYGEN-UPTAKE KINETICS IN HUMANS
    POOLE, DC
    SCHAFFARTZIK, W
    KNIGHT, DR
    DERION, T
    KENNEDY, B
    GUY, HJ
    PREDILETTO, R
    WAGNER, PD
    JOURNAL OF APPLIED PHYSIOLOGY, 1991, 71 (04) : 1245 - 1253
  • [46] Vascular function is related to blood flow during high-intensity, but not low-intensity, knee extension exercise
    Hanson, Brady E.
    Proffit, Meagan
    Gifford, Jayson R.
    JOURNAL OF APPLIED PHYSIOLOGY, 2020, 128 (03) : 698 - 708
  • [47] The effect of high-intensity priming exercise on indices of aerobic function and exercise tolerance during a subsequent high-intensity exercise bout
    Ferguson, C
    Whipp, BJ
    Cathcart, AJ
    Rossiter, HB
    Ward, SA
    FASEB JOURNAL, 2006, 20 (04): : A811 - A811
  • [48] Decrease in oxygen uptake at the end of a high-intensity submaximal running in humans
    Perrey, S
    Candau, R
    Millet, GY
    Borrani, F
    Rouillon, JD
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2002, 23 (04) : 298 - 304
  • [49] Effects of prior heavy exercise on neuromuscular activity and oxygen uptake kinetics during heavy exercise in humans
    Burnley, M
    Doust, JH
    Ball, D
    Jones, AM
    JOURNAL OF PHYSIOLOGY-LONDON, 2002, 539 : 42P - 43P
  • [50] MUSCLE ACTIVITY DURING KNEE-EXTENSION STRENGTHENING EXERCISE PERFORMED WITH ELASTIC TUBING AND ISOTONIC RESISTANCE
    Jakobsen, Markus Due
    Sundstrup, Emil
    Andersen, Christoffer H.
    Bandholm, Thomas
    Thorborg, Kristian
    Zebis, Mette K.
    Andersen, Lars L.
    INTERNATIONAL JOURNAL OF SPORTS PHYSICAL THERAPY, 2012, 7 (06): : 606 - 616