Indices of electromyographic activity and the “slow” component of oxygen uptake kinetics during high-intensity knee-extension exercise in humans

被引:0
|
作者
Stephen W. Garland
Wen Wang
Susan A. Ward
机构
[1] Baltic Business Centre,English Institute of Sport—North East
[2] Queen Mary,Medical Engineering Division, Department of Engineering
[3] University of London,Institute of Membrane and Systems Biology
[4] University of Leeds,undefined
来源
European Journal of Applied Physiology | 2006年 / 97卷
关键词
Electromyography; Frequency analysis; Oxygen uptake kinetics; Muscle fibre type; Phase 2 time constant;
D O I
暂无
中图分类号
学科分类号
摘要
The control of pulmonary oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{{V}}\hbox{O}_{2})$$\end{document} kinetics above the lactate threshold (LT) is complex and controversial. Above LT, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} for square-wave exercise is greater than predicted from the sub-LT \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document}–WR relationship, reflecting the contribution of an additional “slow” component \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{{V}}\hbox{O}_{{2}\,\hbox{sc}}).$$\end{document} Investigators have argued for a contribution to this slow component from the recruitment of fast-twitch muscle fibres, which are less aerobically efficient than slow-twitch fibres. Six healthy subjects performed a rapid-incremental bilateral knee-extension exercise test to the limit of tolerance for the estimation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}\,{\rm peak}},$$\end{document} ventilatory threshold (VT), and the difference between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}{\rm peak}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} at VT (Δ). Subjects then completed three repetitions of square-wave exercise at 30% of VT for 10 min (moderate intensity), and at VT + 25%Δ (heavy intensity) for 20 min. Pulmonary gas exchange was measured breath-by-breath. Surface EMG was recorded from m. rectus femoris; integrated EMG (IEMG) and mean power frequency (MPF) were derived for successive contractions. In comparison to moderate-intensity exercise, the phase 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} kinetics in heavy exercise were marginally slower than for moderate-intensity exercise (time constant (± SD) 25 ± 9 and 22 ± 10 s, respectively; NS), with a discernible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}\,\hbox{sc}}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} difference between minutes 6 and 3 of exercise: 74 ± 21 and 0 ± 20 ml min−1, respectively). However, there was no significant change in IEMG or MPF, either in the moderate domain or in the heavy domain over the period when the slow component was manifest. These observations argue against an appreciable preferential recruitment of fast-twitch units with high force-generating characteristics and fast sarcolemmal conduction velocities in concert with the development of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} slow component during heavy-intensity knee-extensor exercise. The underlying mechanism(s) remains to be resolved.
引用
收藏
页码:413 / 423
页数:10
相关论文
共 50 条
  • [31] The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise
    Temesi, John
    Maturana, Felipe Mattioni
    Peyrard, Arthur
    Piucco, Tatiane
    Murias, Juan M.
    Millet, Guillaume Y.
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2017, 117 (05) : 969 - 978
  • [32] The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise
    John Temesi
    Felipe Mattioni Maturana
    Arthur Peyrard
    Tatiane Piucco
    Juan M. Murias
    Guillaume Y. Millet
    European Journal of Applied Physiology, 2017, 117 : 969 - 978
  • [33] Blood flow regulation and oxygen uptake during high-intensity forearm exercise
    Nyberg, S. K.
    Berg, O. K.
    Helgerud, J.
    Wang, E.
    JOURNAL OF APPLIED PHYSIOLOGY, 2017, 122 (04) : 907 - 917
  • [34] OXYGEN-UPTAKE DYNAMICS DURING HIGH-INTENSITY EXERCISE IN CHILDREN AND ADULTS
    ARMON, Y
    COOPER, DM
    FLORES, R
    ZANCONATO, S
    BARSTOW, TJ
    JOURNAL OF APPLIED PHYSIOLOGY, 1991, 70 (02) : 841 - 848
  • [35] The slow component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-intensity exercise
    Keir, Daniel A.
    Copithorne, David B.
    Hodgson, Michael D.
    Pogliaghi, Silvia
    Rice, Charles L.
    Kowalchuk, John M.
    JOURNAL OF APPLIED PHYSIOLOGY, 2016, 121 (02) : 493 - 502
  • [36] Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans
    Murgatroyd, Scott R.
    Ferguson, Carrie
    Ward, Susan A.
    Whipp, Brian J.
    Rossiter, Harry B.
    JOURNAL OF APPLIED PHYSIOLOGY, 2011, 110 (06) : 1598 - 1606
  • [37] Attenuation of the Oxygen Uptake Slow Component During Intermittent Compared to Continuous Heavy Intensity Exercise
    Rotarius, Timothy R.
    Lauver, Jakob D.
    Scheuermann, Barry W.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2017, 49 (05): : 642 - 642
  • [38] Oxygen supply-consumption balance in the thigh muscles during exhausting knee-extension exercise
    Azuma, K
    Homma, S
    Kagaya, A
    JOURNAL OF BIOMEDICAL OPTICS, 2000, 5 (01) : 97 - 101
  • [39] GLUCOSE KINETICS DURING HIGH-INTENSITY EXERCISE IN ENDURANCE-TRAINED AND UNTRAINED HUMANS
    COGGAN, AR
    RAGUSO, CA
    WILLIAMS, BD
    SIDOSSIS, LS
    GASTALDELLI, A
    JOURNAL OF APPLIED PHYSIOLOGY, 1995, 78 (03) : 1203 - 1207
  • [40] Effect of exercise intensity on the slow component of oxygen uptake in decremental work load exercise
    Yano, T
    Yunoki, T
    Matsuura, R
    Ogata, H
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2004, 55 (02): : 315 - 324