Indices of electromyographic activity and the “slow” component of oxygen uptake kinetics during high-intensity knee-extension exercise in humans

被引:0
|
作者
Stephen W. Garland
Wen Wang
Susan A. Ward
机构
[1] Baltic Business Centre,English Institute of Sport—North East
[2] Queen Mary,Medical Engineering Division, Department of Engineering
[3] University of London,Institute of Membrane and Systems Biology
[4] University of Leeds,undefined
来源
European Journal of Applied Physiology | 2006年 / 97卷
关键词
Electromyography; Frequency analysis; Oxygen uptake kinetics; Muscle fibre type; Phase 2 time constant;
D O I
暂无
中图分类号
学科分类号
摘要
The control of pulmonary oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{{V}}\hbox{O}_{2})$$\end{document} kinetics above the lactate threshold (LT) is complex and controversial. Above LT, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} for square-wave exercise is greater than predicted from the sub-LT \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document}–WR relationship, reflecting the contribution of an additional “slow” component \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\dot{{V}}\hbox{O}_{{2}\,\hbox{sc}}).$$\end{document} Investigators have argued for a contribution to this slow component from the recruitment of fast-twitch muscle fibres, which are less aerobically efficient than slow-twitch fibres. Six healthy subjects performed a rapid-incremental bilateral knee-extension exercise test to the limit of tolerance for the estimation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}\,{\rm peak}},$$\end{document} ventilatory threshold (VT), and the difference between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}{\rm peak}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} at VT (Δ). Subjects then completed three repetitions of square-wave exercise at 30% of VT for 10 min (moderate intensity), and at VT + 25%Δ (heavy intensity) for 20 min. Pulmonary gas exchange was measured breath-by-breath. Surface EMG was recorded from m. rectus femoris; integrated EMG (IEMG) and mean power frequency (MPF) were derived for successive contractions. In comparison to moderate-intensity exercise, the phase 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} kinetics in heavy exercise were marginally slower than for moderate-intensity exercise (time constant (± SD) 25 ± 9 and 22 ± 10 s, respectively; NS), with a discernible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{{2}\,\hbox{sc}}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} difference between minutes 6 and 3 of exercise: 74 ± 21 and 0 ± 20 ml min−1, respectively). However, there was no significant change in IEMG or MPF, either in the moderate domain or in the heavy domain over the period when the slow component was manifest. These observations argue against an appreciable preferential recruitment of fast-twitch units with high force-generating characteristics and fast sarcolemmal conduction velocities in concert with the development of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{{V}}\hbox{O}_{2}$$\end{document} slow component during heavy-intensity knee-extensor exercise. The underlying mechanism(s) remains to be resolved.
引用
收藏
页码:413 / 423
页数:10
相关论文
共 50 条
  • [21] Influence of the oxygen uptake slow component on the aerobic energy cost of high-intensity submaximal treadmill running in humans
    Bernard, O
    Maddio, F
    Ouattara, S
    Jimenez, C
    Charpenet, A
    Melin, B
    Bittel, J
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 1998, 78 (06) : 578 - 585
  • [22] The effect of prior high-intensity cycling exercise on the VO2 kinetics during high-intensity cycling exercise is situated at the additional slow component
    Koppo, K
    Bouckaert, J
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2001, 22 (01) : 21 - 26
  • [23] Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise
    Hopker, James G.
    Caporaso, Giuseppe
    Azzalin, Andrea
    Carpenter, Roger
    Marcora, Samuele M.
    FRONTIERS IN PHYSIOLOGY, 2016, 7
  • [24] The contribution of "resting" body muscles to the slow component of pulmonary oxygen uptake during high-intensity cycling
    Ozyener, Fadil
    Whipp, Brian J.
    Ward, Susan A.
    JOURNAL OF SPORTS SCIENCE AND MEDICINE, 2012, 11 (04) : 759 - 767
  • [25] Skeletal muscle oxygen uptake in obese patients: functional evaluation by knee-extension exercise
    Stefano Lazzer
    Desy Salvadego
    Simone Porcelli
    Enrico Rejc
    Fiorenza Agosti
    Alessandro Sartorio
    Bruno Grassi
    European Journal of Applied Physiology, 2013, 113 : 2125 - 2132
  • [26] Skeletal muscle oxygen uptake in obese patients: functional evaluation by knee-extension exercise
    Lazzer, Stefano
    Salvadego, Desy
    Porcelli, Simone
    Rejc, Enrico
    Agosti, Fiorenza
    Sartorio, Alessandro
    Grassi, Bruno
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2013, 113 (08) : 2125 - 2132
  • [27] OXYGEN-UPTAKE AND THE ACTIVATION OF GLYCOLYSIS DURING EXERCISE OF HIGH-INTENSITY
    HAMAR, D
    KOMADEL, L
    KADLECIK, J
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 1985, 6 (04) : 247 - 247
  • [28] Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation
    Layec, G.
    Bringard, A.
    Vilmen, C.
    Le Fur, Y.
    Micallef, J.
    Perrey, S.
    Cozzone, P.
    Bendahan, D.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2009, 23 : 84 - 85
  • [29] Effects of prior short multiple-sprint exercises with different intersprint recoveries on the slow component of oxygen uptake during high-intensity exercise
    Lanzi, Stefano
    Borrani, Fabio
    Wolf, Martin
    Gojanovic, Boris
    Malatesta, Davide
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2012, 37 (06) : 1080 - 1090
  • [30] Kinetics of Vo2 and femoral artery blood flow during heavy-intensity, knee-extension exercise
    Paterson, ND
    Kowalchuk, JM
    Paterson, DH
    JOURNAL OF APPLIED PHYSIOLOGY, 2005, 99 (02) : 683 - 690