Irreducibility of integer-valued polynomials in several variables

被引:0
作者
Devendra Prasad
机构
[1] IISER,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2023年 / 86卷
关键词
Integer-valued polynomials; Irreducibility; Dedekind domains;
D O I
暂无
中图分类号
学科分类号
摘要
Let S̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{S}$$\end{document} be an arbitrary subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^n$$\end{document} where R is a domain with the field of fractions K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}. Denote the ring of polynomials in n variables over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} by K[x̲]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[\underline{x}] $$\end{document}. The ring of integer-valued polynomials over S̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{S}$$\end{document}, denoted by Int(S̲,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\underline{S},R)$$\end{document}, is defined as the set of the polynomials of K[x̲]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[\underline{x}] $$\end{document}, which maps S̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{S}$$\end{document} to R. In this article, we study the irreducibility of the polynomials of Int(S̲,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\underline{S},R)$$\end{document} for the first time in the case when R is a Unique Factorization Domain. We also show that our results remain valid when R is a Dedekind domain or, sometimes, any domain.
引用
收藏
页码:152 / 159
页数:7
相关论文
共 9 条
[1]  
Evrard S(2012)Bhargava’s factorials in several variables J. Algebra 372 134-148
[2]  
Prasad D(2021)A generalization of Selfridge’s question Integers 21 A66-955
[3]  
Prasad D(2021)Irreducibility of integer-valued polynomials I Commun. Algebra 49 948-52
[4]  
Prasad D(2019)A survey on fixed divisors Conflu. Math. 11 29-1320
[5]  
Rajkumar K(2018)Fixed divisor of a multivariate polynomial and generalized factorials in several variables J. Korean Math. Soc. 55 1305-undefined
[6]  
Satyanarayana Reddy A(undefined)undefined undefined undefined undefined-undefined
[7]  
Rajkumar K(undefined)undefined undefined undefined undefined-undefined
[8]  
Satyanarayana Reddy A(undefined)undefined undefined undefined undefined-undefined
[9]  
Semwal DP(undefined)undefined undefined undefined undefined-undefined