Chromatic numbers of layered graphs with a bounded maximal clique

被引:0
作者
Berlov S.L. [1 ]
机构
[1] High School No. 239, St.Petersburg
关键词
Russia; High School; Layered Graph; Chromatic Number; Maximal Clique;
D O I
10.1007/s10958-011-0610-5
中图分类号
学科分类号
摘要
A graph is called n-layered if the set of its vertices is a union of pairwise nonintersecting n-cliques. We estimatechromatic numbers of n-layered graphs without (n + 1)-cliques. Bibliography: 10 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:579 / 591
页数:12
相关论文
共 10 条
[1]  
Brooks R.L., On coloring the nodes of a network, Proc. Cambrige Phil. Soc., 37, pp. 194-197, (1941)
[2]  
Reed B., A strengthening of Brooks' theorem, J.Combin. Theory, Ser. B, 76, pp. 136-149, (1999)
[3]  
Kostochka A.V., Degree, density, and chromatic number of graphs, Metody Diskret. Analiza, 35, pp. 45-70, (1980)
[4]  
Alon N., The strong chromatic number of a graph, Random Struct. Alg., 3, pp. 1-7, (1992)
[5]  
Haxell P.E., On the strong chromatic number, Combin., Probab. Comput, 13, pp. 857-865, (2004)
[6]  
Dol'nikov V.L., On one coloring problem, Sib. Mat. Zh, 13, pp. 1272-1281, (1972)
[7]  
Erdos P., Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53, pp. 292-294, (1947)
[8]  
Graham R.L., Rothschild B.L., Spencer J.H., Ramsey Theory, (1990)
[9]  
Nordhaus E.A., On the density and chromatic number of graphs, Lect. Notes Math., 110, pp. 245-249, (1969)
[10]  
Schurger K., Inequalities for the chromatic number of graphs, J. Combin. Theory, Ser. B, 16, pp. 77-85, (1974)