Cu(In,Ga)Se2 absorbers prepared by electrodeposition for low-cost thin-film solar cells

被引:0
|
作者
Jing-Yu Qu
Zheng-Fei Guo
Kun Pan
Wei-Wei Zhang
Xue-Jin Wang
机构
[1] China Agricultural University,College of Science
来源
Rare Metals | 2017年 / 36卷
关键词
Cu(In,Ga)Se; Thin films; Electrodeposition; Selenization; Heating rates;
D O I
暂无
中图分类号
学科分类号
摘要
Reducing the manufacturing cost of solar cells is necessary to their industrial production. Electrodepositing is an effective, non-vacuum method which is very suitable for cutting the manufacturing cost of thin films as well as developing its large-scale industrial production. In this study, about 1-μm-thick Cu(In,Ga)Se2 (CIGS) precursors were electrodeposited on Mo/glass substrates in aqueous solution utilizing a three-electrode potentiostatic system. Triethanolamine was used as complexing agent, and all parameters of electrodeposition were precisely controlled. After that, the electrodeposited precursors were selenized in a Se atmosphere with different heating ramp rates (60 and 600 °C·min−1). High-quality CIGS films were obtained, and their characteristics were investigated by X-ray fluorescence, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, Raman spectra and near-infrared–visible (NIR-Vis) spectra. The results reveal that there are many differences between the properties of the films under different heating rates. Finally, CIGS solar cells were fabricated using a fast and a slow heating rate. The maximum efficiencies achieved for the films selenized at 60 and 600 °C·min−1 are 3.15% and 0.71%, respectively.
引用
收藏
页码:729 / 736
页数:7
相关论文
共 50 条
  • [21] Fabrication and characterization of Cu(In,Ga)Se2 thin-film solar cells prepared via a solution process
    Wu, Chung-Hsien
    Lu, Chung-Hsin
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 2516 - 2518
  • [22] Role of planar defects in Cu(In,Ga)Se2 thin-film solar cells
    Cojocaru-Miredin, Oana
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 2623 - 2626
  • [23] Optical and recombination losses in thin-film Cu(In,Ga)Se2 solar cells
    Kosyachenko, L. A.
    Mathew, X.
    Paulson, P. D.
    Lytvynenko, V. Ya.
    Maslyanchuk, O. L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 291 - 302
  • [24] Flexible Cu(In,Ga)Se2 thin-film solar cells for space application
    Otte, Karsten
    Makhova, Liudmila
    Braun, Alexander
    Konovalov, Igor
    THIN SOLID FILMS, 2006, 511 : 613 - 622
  • [25] Optical modeling and simulation of thin-film Cu(In,Ga)Se2 solar cells
    Krc, J.
    Campa, A.
    Cernivec, G.
    Malmstrom, J.
    Edoff, M.
    Smole, F.
    Topic, M.
    NUSOD '06: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2006, : 33 - +
  • [26] Photosensitivity of thin-film ZnO/CdS/Cu(In, Ga)Se2 solar cells
    T. Walter
    V. Yu. Rud’
    Yu. V. Rud’
    H. W. Schock
    Semiconductors, 1997, 31 : 681 - 685
  • [27] Quantitative luminescence mapping of Cu(In, Ga)Se2 thin-film solar cells
    Delamarre, Amaury
    Paire, Myriam
    Guillemoles, Jean-Francois
    Lombez, Laurent
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10): : 1305 - 1312
  • [28] Cu(In, Ga)Se2 thin film solar cells grown at low temperatures
    Zhang, W.
    Zhu, H.
    Zhang, L.
    Guo, Y.
    Niu, X.
    Li, Z.
    Chen, J.
    Liu, Q.
    Mai, Y.
    SOLID-STATE ELECTRONICS, 2017, 132 : 57 - 63
  • [29] Cu(In,Ga)Se2 thin-film photosensors
    Nakada, T
    Fukuda, M
    Yamanaka, M
    Kunioka, A
    SENSORS AND MATERIALS, 1999, 11 (01) : 21 - 29
  • [30] Smooth Cu electrodeposition for Cu(In, Ga)Se2 thin-film solar cells: Dendritic clusters elimination by Ag buffer layer
    Li, Bing
    Zhao, Aimei
    Xiang, Dongmei
    Peng, Zhuo
    Yuan, Yujie
    Xing, Yupeng
    Yao, Liyong
    Bi, Jinlian
    Li, Wei
    Energy Reports, 2022, 8 : 1847 - 1852