The solubility of risperidone (Risp) in aqueous buffered cyclodextrin (CD) solution was investigated for α-, β-, γ- and HP-β-CD. The effects of pH, ionic strength and temperature on complex stability were also explored. Neutral Risp tends to form higher order complexes (1:2) with both β- and HP-β-CD, but only 1:1 type complexes with α-, and γ-CD. The tendency of Risp to complex with cyclodextrins is in the order β-CD > HP-β-CD > γ-CD > α-CD. The 1:1 complex formation constant of Risp/HP-β-CD increases with increasing ionic strength in an opposite trend to the inherent solubility (S0) of Risp, thus indicating significant hydrophobic effect. The hydrophobic effect contributes to the extent of 72% towards neutral Risp/HP-β-CD complex stability, while specific interactions contribute only 4.7 kJ/mol. Thermodynamic studies showed that 1:1 Risp/HP-β-CD complex formation is driven by a favorable enthalpy change (ΔH0=−31.2 kJ/mol, ΔS0=−7 J/mol.K) while the 1:2 complex is largely driven by entropy changes (ΔH0=−5.0 kJ/mol, ΔS0=42 J/mol.K). Complex stability was found to vary with pH, with a higher formation constant for neutral Risp. Molecular mechanical computations using MM (atomic charges and bond dipole algorithms) and Amber force fields, which were carried out to explore possible sites of interactions between Risp and CDs and to rationalize complex stoichiometry, produced similar results concerning optimal inclusion complex geometries and stoichiometries.