Stochastic self-sustained oscillations of non-autonomous systems

被引:0
作者
V. Anishchenko
T. Vadivasova
G. Strelkova
机构
[1] Saratov State University,International Institute of Nonlinear Dynamics, Department of Physics
来源
The European Physical Journal Special Topics | 2010年 / 187卷
关键词
European Physical Journal Special Topic; Noise Intensity; Chaotic Attractor; Nonlinear Stochastic System; Nonautonomous System;
D O I
暂无
中图分类号
学科分类号
摘要
In the present minireview, we analyze autonomous and non-autonomous oscillations of dynamical and stochastic systems in the framework of common concepts. We introduce the definition of an attractor for a non-autonomous system. We also propose the definition of self-sustained oscillations, which can be applied for both autonomous and non-autonomous systems. We consider noise-induced oscillations and formulate the definition of stochastic self-sustained oscillations for this case. All the statements made in this work are illustrated by particular examples.
引用
收藏
页码:109 / 125
页数:16
相关论文
共 44 条
[1]  
Schmalfuss B.(1997)undefined ZAMP 48 951-undefined
[2]  
Crauell H.(1997)undefined J. Dyn. Diff. Eq. 9 307-undefined
[3]  
Debussche A.(1993)undefined J. Stat. Phys. 70 141-undefined
[4]  
Flandoli F.(1986)undefined ZAMM 66 141-undefined
[5]  
Schimansky-Geier L.(1940)undefined Physica 7 284-undefined
[6]  
Herzel H.(1998)undefined Int. J. Bifurc. Chaos 8 869-undefined
[7]  
Ebeling W.(1994)undefined Phys. Rev. E 49 3484-undefined
[8]  
Herzel H.(1995)undefined Phys. Rev. Lett. 75 4157-undefined
[9]  
Richert W.(1999)undefined Phys. Rev. E 60 284-undefined
[10]  
Schimansky-Geier L.(2004)undefined Phys. Reports 392 321-undefined