Intuitionistic Logic is a Connexive Logic

被引:0
作者
Davide Fazio
Antonio Ledda
Francesco Paoli
机构
[1] Università di Teramo,Dipartimento di Scienze della Comunicazione
[2] Università di Cagliari,Dipartimento di Pedagogia, Psicologia, Filosofia
来源
Studia Logica | 2024年 / 112卷
关键词
Connexive logic; Intuitionistic logic; Heyting algebra; Semi-Heyting algebra; Algebraic logic; Connexive Heyting algebra; Connexive Heyting logic;
D O I
暂无
中图分类号
学科分类号
摘要
We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic (CHL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CHL}$$\end{document}), hereby introduced as an example of a strongly connexive logic with an intuitive semantics. We use the reverse algebraisation paradigm: CHL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CHL}$$\end{document} is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for CHL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CHL}$$\end{document}; moreover, we suggest a possible computational interpretation of its connexive conditional, and we revisit Kapsner’s idea of superconnexivity.
引用
收藏
页码:95 / 139
页数:44
相关论文
共 60 条
[1]  
Abad M(2011)The variety generated by semi-Heyting chains Soft Computing 15 721-728
[2]  
Cornejo JM(2013)Semi-Heyting algebras term-equivalent to Goedel algebras Order 30 625-642
[3]  
Díaz Varela JP(1997)On subtractive varieties III: From ideals to congruences Algebra Universalis 37 296-333
[4]  
Abad M(1962)A propositional logic with subjunctive conditionals Journal of Symbolic Logic 27 327-343
[5]  
Cornejo JM(2006)Equivalence of consequence operations Studia Logica 83 91-110
[6]  
Díaz Varela JP(1984)On the structure of varieties with equationally definable principal congruences II Algebra Universalis 18 334-379
[7]  
Aglianò P(1982)On the structure of varieties with equationally definable principal congruences I Algebra Universalis 15 195-227
[8]  
Ursini A(1994)On the structure of varieties with equationally definable principal congruences III Algebra Universalis 32 545-608
[9]  
Angell RB(1994)On the structure of varieties with equationally definable principal congruences IV Algebra Universalis 31 1-35
[10]  
Blok WJ(2008)Assertionally equivalent quasivarieties International Journal of Algebra and Computation 18 589-681