Regularity of stresses in Prandtl-Reuss perfect plasticity

被引:0
作者
A. Demyanov
机构
[1] SISSA,
来源
Calculus of Variations and Partial Differential Equations | 2009年 / 34卷
关键词
Quasistatic evolution; Rate independent processes; Prandtl-Reuss plasticity; Regularity of solutions; 74C05 (28A33 · 49N60 · 74G65);
D O I
暂无
中图分类号
学科分类号
摘要
We study the differential properties of solutions of the Prandtl-Reuss model. We prove that in dimensions n = 2, 3 the stress tensor has locally square-integrable first derivatives: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma\in L^\infty([0,T];W^{1,2}_{{\rm loc}}(\Omega;{\mathbb M}^{n{\times}n}_{{\rm sym}}))$$\end{document} . The result is based on discretization of time and uniform estimates of solutions of the incremental problems, which generalize the estimates in the case of Hencky perfect plasticity. Counterexamples to the regularity of displacements and plastic strains in the quasistatic case are presented.
引用
收藏
页码:23 / 72
页数:49
相关论文
共 20 条
  • [1] Bensoussan A.(1996)Asymptotic behaviour of the time-dependent Norton-Hoff law in plasticity theory and Comment. Math. Univ. Carol. 37 285-304
  • [2] Frehse J.(2006) regularity Arch. Ration. Mech. Anal. 180 237-291
  • [3] Dal Maso G.(1999)Quasistatic evolution problems for linearly elastic-perfectly plastic materials Math. Methods Appl. Sci. 9 1307-1321
  • [4] DeSimone A.(1976)Boundary regularity results for models of elasto-perfect plasticity J. Math. Pures Appl. 55 431-444
  • [5] Mora M.G.(2006)Existence theorems for plasticity problems Math. Methods Appl. Sci 29 1363-1391
  • [6] Frehse J.(1983)Global regularity of the elastic fields of a power-law model on Lipschitz domains Appl. Math. Optim. 10 1-35
  • [7] Málek J.(2003)Dual spaces of stresses and strains, with applications to Hencky plasticity Boll. Unione Mat. Ital. Sez. B 6 581-595
  • [8] Johnson C.(1999)A chain rule formula for the composition of a vector-valued function by a piecewise smooth function J. Math. Sci. 93 779-783
  • [9] Knees D.(1996)Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory Izv. Math. 60 179-216
  • [10] Kohn R.V.(1993)Twodimensional variational problems in plasticity theory St. Petersb. Math. J. 4 1257-1272