Assessing the dispersion of hydraulic conductivity values estimated using the Dupuit, Thiem, and Boulton methods on repeated pumping tests in an unconfined aquiferÉvaluation de la dispersion des valeurs de perméabilité estimées par les méthodes Dupuit, Thiem et Boulton sur des essais de pompage répétés dans un aquifère libreEvaluación de la dispersión de los valores de conductividad hidráulica estimados mediante los métodos de Dupuit, Thiem y Boulton en ensayos de bombeo repetidos en un acuífero no confinado使用Dupuit、Thiem和Boulton方法评估非承压含水层重复抽水试验的渗透系数分散性Avaliando a dispersão dos valores de condutividade hidráulica estimados usando os métodos de Dupuit, Thiem e Boulton em repetidos testes de bombeamento em um aquífero não confinado

被引:0
作者
N. Peyraube
J. D. Villanueva
R. Lastennet
A. Denis
Q. Lavigne
N. Houillon
F. Naessens
B. El Oifi
S. Mateo
机构
[1] Université de Bordeaux,
[2] UMR 5295 I2M-GCE,undefined
[3] University of the Philippines Los Baños,undefined
[4] SESAM,undefined
[5] College,undefined
[6] ThermoFisher,undefined
关键词
Pumping/well test; Hydraulic conductivity; Variability; Aquifer properties;
D O I
暂无
中图分类号
学科分类号
摘要
Hydraulic conductivity (K) is rarely directly measured but can be estimated commonly through the Dupuit, Thiem, and Boulton methods. But which method can give more reproducible values? In this study, dispersion is assessed by examining the range of tolerance needed around the average value to get half of the values of a dataset available for a given borehole. A total of 403 values from 14 boreholes situated at a 1,150-m2 test site in southwestern France were acquired from 2016 to 2020 using pumping tests of 2 h or 5 days. Estimated values of K ranged from 5.0 × 10–6 to 9.6 × 10–5 m/s. The Thiem method, usually providing a value between two boreholes, was modified to give an estimation for one borehole. This method presented the smallest dispersion: half of the values are within the interval of +11% of the average value, followed by the Boulton (+12%) and then Dupuit (+23%) methods. The Thiem and Dupuit methods can be used after a 2 h pumping in pseudo-steady-state condition; in contrast, the Boulton method requires long-term pumping. The Thiem method appeared dependent on the borehole quality, especially when considering the effect of clogging during short-term pumping. Finally, using the Dupuit method, average estimated K values from 2 h or 5-day pumping tests are close (3.1 × 10–5 and 2.0 × 10–5 m/s, respectively). The Dupuit method was a good compromise between variability of the estimation and sensibility to site conditions. Also, measurements made with automated probes presented significant variability meaning that human error is not the sole factor of variability.
引用
收藏
页码:1863 / 1882
页数:19
相关论文
共 70 条
  • [1] Boulton NS(1963)Analysis of data from non-equilibrium pumping test allowing for delayed yield from storage Proc Inst Civ Eng 26 469-482
  • [2] Bresciani E(2020)Well radius of influence and radius of investigation: what exactly are they and how to estimate them? J Hydrol 583 124646-312
  • [3] Shandilya RN(1998)Relationship between pumping-test and slug-test parameters: scale effect or artifact? Groundwater 36 305-67
  • [4] Kang PK(2004)Stochastic analysis of pumping test drawdown data in heterogeneous geologic formations J Hydraul Res 42 59-183
  • [5] Lee S(2005)Dealing with spatial heterogeneity Hydrogeol J 13 161-2638
  • [6] Butler JJ(2016)Estimation of soil permeability Alex Eng J 55 2631-174
  • [7] Healey JM(1997)Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data: I theory J Hydrol 203 162-163
  • [8] Copty NK(2006)Characteristics of unsteady flow to wells in unconfined and semi-confined aquifers J Hydrol 325 154-194
  • [9] Findikakis AN(1978)Analyse automatique des données de pompage d’essai - application aux hypothèses de boulton et d’hantush [Automatic analysis of test pumping data: application to the boulton and hantush hypotheses] J Hydrol 37 185-142
  • [10] De Marsily G(1975)Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response Water Resour Res 11 KAFB3556-510