Exponential sampling with a multiplier

被引:1
作者
Bardaro, Carlo [1 ]
Mantellini, Ilaria [1 ]
Schmeisser, Gerhard [2 ]
机构
[1] Univ Perugia, Dept Math & Comp Sci, Via Vanvitelli 1, I-06123 Perugia, Italy
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
来源
SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS | 2023年 / 21卷 / 01期
关键词
Polar-analytic functions; Mellin-Paley-Wiener spaces; Mellin-Bernstein spaces; Multipliers; Exponential sampling; PALEY-WIENER THEOREM; TRUNCATION ERROR; TRANSFORM;
D O I
10.1007/s43670-023-00048-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exponential sampling formula has some limitations. By incorporating a Mellin band limited multiplier, we extend it to a wider class of functions with a series that converges faster. This series is a generalized exponential sampling series with some interesting properties. Moreover, under a side condition, any generalized exponential sampling series that is interpolating can be generated by a Mellin bandlimited multiplier. For an error analysis, we consider a truncated series with 2N + 1 terms and look for a highest speed of convergence as N -> infinity. We show by using a certain non-bandlimited multiplier, which introduces in addition an aliasing error, that we can achieve a higher rate of convergence to the function, namely O(e(-alpha N))with alpha>0,than with the truncated series of an exact formula. The results are illustrated by three examples.
引用
收藏
页数:31
相关论文
共 30 条
[1]   ON MULTIDIMENSIONAL SINC-GAUSS SAMPLING FORMULAS FOR ANALYTIC FUNCTIONS [J].
ASHARAB, R. A. S. H. A. D. M., I ;
AL-HADDAD, F. E. L. W. A. H. H. .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 :242-262
[2]   On two-dimensional classical and Hermite sampling [J].
Asharabi, R. M. ;
Prestin, J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) :851-871
[3]  
Bardaro C, An Introduction to Mellin Analysis and its Applications
[4]   Polar-Analytic Functions: Old and New Results, Applications [J].
Bardaro, Carlo ;
Butzer, Paul L. ;
Mantellini, Ilaria ;
Schmeisser, Gerhard .
RESULTS IN MATHEMATICS, 2022, 77 (02)
[5]   Valiron's Interpolation Formula and a Derivative Sampling Formula in the Mellin Setting Acquired via Polar-Analytic Functions [J].
Bardaro, Carlo ;
Butzer, Paul L. ;
Mantellini, Ilaria ;
Schmeisser, Gerhard .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) :629-652
[6]   Integration of polar-analytic functions and applications to Boas' differentiation formula and Bernstein's inequality in Mellin setting [J].
Bardaro, Carlo ;
Butzer, Paul L. ;
Mantellini, Ilaria ;
Schmeisser, Gerhard .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (04) :503-514
[7]   Development of a new concept of polar analytic functions useful in Mellin analysis [J].
Bardaro, Carlo ;
Butzer, Paul L. ;
Mantellini, Ilaria ;
Schmeisser, Gerhard .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (12) :2040-2062
[8]   Exponential Sampling Series: Convergence in Mellin-Lebesgue Spaces [J].
Bardaro, Carlo ;
Mantellini, Ilaria ;
Schmeisser, Gerhard .
RESULTS IN MATHEMATICS, 2019, 74 (03)
[9]   A fresh approach to the Paley-Wiener theorem for Mellin transforms and the Mellin-Hardy spaces [J].
Bardaro, Carlo ;
Butzer, Paul L. ;
Mantellini, Ilaria ;
Schmeisser, Gerhard .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (17-18) :2759-2774
[10]   A GENERALIZATION OF THE EXPONENTIAL SAMPLING SERIES AND ITS APPROXIMATION PROPERTIES [J].
Bardaro, Carlo ;
Faina, Loris ;
Mantellini, Ilaria .
MATHEMATICA SLOVACA, 2017, 67 (06) :1481-1496