共 50 条
Improving the accuracy of soil organic carbon content prediction based on visible and near-infrared spectroscopy and machine learning
被引:0
|作者:
Mingxing Xu
Xianyao Chu
Yesi Fu
Changjiang Wang
Shaohua Wu
机构:
[1] Zhejiang Institute of Geological Survey,School of Tourism and Urban
[2] Engineering Technology Innovation Center of Agricultural Land Ecological Assessment and Rehabilitation in Plain Area of Ministry of Natural Resources,rural Planning
[3] Zhejiang Gongshang University,Institute of Land and Urban Rural Development
[4] 11Th Geologic Team of Zhejiang Province,undefined
[5] Zhejiang University of Finance and Economics,undefined
来源:
Environmental Earth Sciences
|
2021年
/
80卷
关键词:
Vis–NIR spectroscopy;
Wavelet neural network;
Support vector machine;
Machine learning;
Soil organic carbon;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Choosing appropriate multivariate calibration and preprocessing transformation techniques is important in the determination of soil organic carbon (SOC) content based on visible and near-infrared (Vis–NIR) spectroscopy. The performance levels of partial least-squares regression (PLSR), support vector machine regression (SVMR), and wavelet neural network (WNN) calibration methods coupled with different preprocessing approaches were compared using three kinds of criteria, including the coefficient of determination (R2), root mean square error (RMSE), and residual prediction deviation (RPD). A total of 328 soil samples collected from the south bank of Hangzhou Bay were used as the dataset for the calibration–validation procedure and SOC content inversion. The effects of spectra preprocessing transformation methods were evaluated for raw spectra, Savitzky–Golay smoothing with the first derivatives of reflectance (FDR) and Savitzky–Golay smoothing with logarithm of reciprocal of the reflectance (log R−1). The results indicate that the SVMR is superior to the PLSR, and WNN models for SOC content prediction. The combination of the SVMR model with FDR provided the best prediction results for the SOC content, with R2p = 0.92, RPDP = 2.82, RMSEP = 0.36%, and a kappa correlation coefficient of interpolation as high as 0.97. The FDR of Vis–NIR spectroscopy combined with the SVMR model is recommended over the PLSR and WNN modeling techniques for the high-accuracy determination of the SOC content.
引用
收藏
相关论文