Improving the accuracy of soil organic carbon content prediction based on visible and near-infrared spectroscopy and machine learning

被引:0
|
作者
Mingxing Xu
Xianyao Chu
Yesi Fu
Changjiang Wang
Shaohua Wu
机构
[1] Zhejiang Institute of Geological Survey,School of Tourism and Urban
[2] Engineering Technology Innovation Center of Agricultural Land Ecological Assessment and Rehabilitation in Plain Area of Ministry of Natural Resources,rural Planning
[3] Zhejiang Gongshang University,Institute of Land and Urban Rural Development
[4] 11Th Geologic Team of Zhejiang Province,undefined
[5] Zhejiang University of Finance and Economics,undefined
来源
关键词
Vis–NIR spectroscopy; Wavelet neural network; Support vector machine; Machine learning; Soil organic carbon;
D O I
暂无
中图分类号
学科分类号
摘要
Choosing appropriate multivariate calibration and preprocessing transformation techniques is important in the determination of soil organic carbon (SOC) content based on visible and near-infrared (Vis–NIR) spectroscopy. The performance levels of partial least-squares regression (PLSR), support vector machine regression (SVMR), and wavelet neural network (WNN) calibration methods coupled with different preprocessing approaches were compared using three kinds of criteria, including the coefficient of determination (R2), root mean square error (RMSE), and residual prediction deviation (RPD). A total of 328 soil samples collected from the south bank of Hangzhou Bay were used as the dataset for the calibration–validation procedure and SOC content inversion. The effects of spectra preprocessing transformation methods were evaluated for raw spectra, Savitzky–Golay smoothing with the first derivatives of reflectance (FDR) and Savitzky–Golay smoothing with logarithm of reciprocal of the reflectance (log R−1). The results indicate that the SVMR is superior to the PLSR, and WNN models for SOC content prediction. The combination of the SVMR model with FDR provided the best prediction results for the SOC content, with R2p = 0.92, RPDP = 2.82, RMSEP = 0.36%, and a kappa correlation coefficient of interpolation as high as 0.97. The FDR of Vis–NIR spectroscopy combined with the SVMR model is recommended over the PLSR and WNN modeling techniques for the high-accuracy determination of the SOC content.
引用
收藏
相关论文
共 50 条
  • [21] Prediction of Soil Properties by Visible and Near-Infrared Reflectance Spectroscopy
    Shahrayini, E.
    Noroozi, A. A.
    Eghbal, M. Karimian
    EURASIAN SOIL SCIENCE, 2020, 53 (12) : 1760 - 1772
  • [22] Prediction of Soil Properties by Visible and Near-Infrared Reflectance Spectroscopy
    E. Shahrayini
    A. A. Noroozi
    M. Karimian Eghbal
    Eurasian Soil Science, 2020, 53 : 1760 - 1772
  • [23] Prediction of soil organic carbon in soil profiles based on visible-near-infrared hyperspectral imaging spectroscopy
    Liu, Shuyu
    Chen, Jiaying
    Guo, Long
    Wang, Junguang
    Zhou, Zefan
    Luo, Jingyi
    Yang, Ruiqing
    SOIL & TILLAGE RESEARCH, 2023, 232
  • [24] Soil Classification Based on Deep Learning Algorithm and Visible Near-Infrared Spectroscopy
    Li, Xueying
    Fan, Pingping
    Li, Zongmin
    Chen, Guangyuan
    Qiu, Huimin
    Hou, Guangli
    JOURNAL OF SPECTROSCOPY, 2021, 2021
  • [25] Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy
    Stevens, Antoine
    Nocita, Marco
    Toth, Gergely
    Montanarella, Luca
    van Wesemael, Bas
    PLOS ONE, 2013, 8 (06):
  • [26] Improving accuracy of prediction model for soluble solids content of watermelon by variable selection based on near-infrared spectroscopy
    Land Use and Technology Department, China University of Geosciences , Beijing 100083, China
    不详
    Nongye Gongcheng Xuebao, 2013, 12 (264-270):
  • [27] Prediction of soil macronutrients content using near-infrared spectroscopy
    He, Yong
    Huang, Min
    Garcia, Annia
    Hernandez, Antihus
    Song, Haiyan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2007, 58 (02) : 144 - 153
  • [28] Quantitative prediction of soil chromium content using laboratory-based visible and near-infrared spectroscopy with different ensemble learning models
    Fu, Chengbiao
    Jiang, Yuheng
    Tian, Anhong
    ADVANCES IN SPACE RESEARCH, 2024, 74 (10) : 4705 - 4720
  • [29] Improving the prediction of soil organic matter using visible and near infrared spectroscopy of moist samples
    Wang, Changkun
    Pan, Xianzhang
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2016, 24 (03) : 231 - 241
  • [30] Prediction of Soil Organic Matter Using Visible-Short Near-Infrared Imaging Spectroscopy
    Jiao Cai-xia
    Zheng Guang-hui
    Xie Xian-li
    Cui Xue-feng
    Shang Gang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (10) : 3277 - 3281