Group algebras of metacyclic groups over finite fields

被引:0
作者
Assuena S. [1 ]
Milies C.P. [2 ]
机构
[1] Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco 3972, São Bernardo do Campo, CEP: 09850-901, SP
[2] Instituto de Matemática e Estatística-USP, Rua Matão 1010, Caixa Postal 66281, São Paulo, CEP: 05311-970, SP
关键词
Finite groups; Primitive idempotents; Semisimple group algebras; Split metacyclic groups;
D O I
10.1007/s40863-016-0043-7
中图分类号
学科分类号
摘要
In this paper, we consider semisimple group algebras FqG of non abelian split metacyclic groups over a finite field. We give conditions for them to have a minimal number of simple components and find the primitive central idempotents of FqG in the case when the order G is equals pmℓn, where p and ℓ are different prime numbers. © 2016, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:46 / 52
页数:6
相关论文
共 50 条