Group algebras of metacyclic groups over finite fields

被引:0
|
作者
Assuena S. [1 ]
Milies C.P. [2 ]
机构
[1] Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco 3972, São Bernardo do Campo, CEP: 09850-901, SP
[2] Instituto de Matemática e Estatística-USP, Rua Matão 1010, Caixa Postal 66281, São Paulo, CEP: 05311-970, SP
关键词
Finite groups; Primitive idempotents; Semisimple group algebras; Split metacyclic groups;
D O I
10.1007/s40863-016-0043-7
中图分类号
学科分类号
摘要
In this paper, we consider semisimple group algebras FqG of non abelian split metacyclic groups over a finite field. We give conditions for them to have a minimal number of simple components and find the primitive central idempotents of FqG in the case when the order G is equals pmℓn, where p and ℓ are different prime numbers. © 2016, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:46 / 52
页数:6
相关论文
共 50 条
  • [1] Good codes from metacyclic groups
    Assuena, Samir
    Milies, Cesar Polcino
    RINGS, MODULES AND CODES, 2019, 727 : 39 - 47
  • [2] Good codes from metacyclic groups II
    Assuena, Samir
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (02)
  • [3] A classification of metacyclic groups by group invariants
    Garcia-Blazquez, Angel
    Del Rio, Angel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (02): : 209 - 233
  • [4] A reduction theorem for the Isomorphism Problem of group algebras over fields
    Garcia-Lucas, Diego
    del Rio, Angel
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (04)
  • [5] Local Subgroups and Group Algebras of Finite p-Solvable Groups
    Hanaki A.
    Koshitani S.
    Algebras and Representation, 1998, 1 (2) : 155 - 159
  • [6] A classification of exceptional components in group algebras over abelian number fields
    Bachle, Andreas
    Caicedo, Mauricio
    Van Gelder, Inneke
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [7] Explicit idempotents of finite group algebras
    Brochero Martinez, F. E.
    Giraldo Vergara, C. R.
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 123 - 131
  • [8] Bound on the diameter of metacyclic groups
    Rajeevsarathy, Kashyap
    Sarkar, Siddhartha
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [9] Quasisimple classical groups and their complex group algebras
    Hung Ngoc Nguyen
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (02) : 973 - 998
  • [10] Saturation rank for finite group schemes: Finite groups and infinitesimal group schemes
    Pan, Yang
    FORUM MATHEMATICUM, 2018, 30 (02) : 479 - 495