\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $E_{\infty}$\end{document}-structure for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $Q_*(R)$\end{document}

被引:0
作者
Birgit Richter
机构
[1] Mathematisches Institut der Universität Bonn,
[2] Beringstr.1,undefined
[3] D-53115 Bonn,undefined
[4] Germany (e-mail: richter@math.uni-bonn.de) ,undefined
关键词
Commutative Ring; Hochschild Homology; Monoidal Functor; Precise Notation; High Homotopies;
D O I
10.1007/s002080050343
中图分类号
学科分类号
摘要
MacLane homology of a ring R is the Hochschild homology of the so called cubical construction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $Q_*(R)$\end{document}, which is a chain-algebra. If we take a commutative ring R, the Dixmier product on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $Q_*(R)$\end{document} is no longer commutative. The main result of this paper is that it is commutative up to higher homotopies, i.e. that it is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $E_{\infty}$\end{document}-algebra. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $E_{\infty}$\end{document}-operad which acts on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $Q_*(R)$\end{document} is constructed by using the analogue of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $Q_*$\end{document}-complex in the context of finite sets. For the precise notation of an operad action on these complexes the definition of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ E_{\infty}$\end{document}-monoidal functor is introduced.
引用
收藏
页码:547 / 564
页数:17
相关论文
empty
未找到相关数据