We exhibit a simple infinite family of series-parallel graphs that cannot be metrically embedded into Euclidean space with distortion smaller than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $\Omega(\sqrt{\log n})$ \end{document} . This matches Rao's [14] general upper bound for metric embedding of planar graphs into Euclidean space, thus resolving the question how well do planar metrics embed in Euclidean spaces?
机构:
Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg, Russia
Univ Warsaw, Inst Informat, Warsaw, PolandRussian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg, Russia
Karpov, Nikolai
Pilipczuk, Marcin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Inst Informat, Warsaw, PolandRussian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg, Russia
Pilipczuk, Marcin
Zych-Pawlewicz, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Inst Informat, Warsaw, PolandRussian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg, Russia