Compact Embeddings for Fractional Super and Sub Harmonic Functions with Radial Symmetry

被引:1
作者
Bellazzini, Jacopo [1 ]
Georgiev, Vladimir [1 ,2 ,3 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, Sofia 1113, Bulgaria
关键词
Interpolation inequalities; Fractional Sobolev inequality; Riesz potential; Radial symmetry; Compact embeddings; NIRENBERG INEQUALITIES; GAGLIARDO-NIRENBERG; EQUATION;
D O I
10.1007/s00041-024-10082-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove compactness of the embeddings in Sobolev spaces for fractional super and sub harmonic functions with radial symmetry. The main tool is a pointwise decay for radially symmetric functions belonging to a function space defined by finite homogeneous Sobolev norm together with finite L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} norm of the Riesz potentials. As a byproduct we prove also existence of maximizers for the interpolation inequalities in Sobolev spaces for radially symmetric fractional super and sub harmonic functions.
引用
收藏
页数:27
相关论文
共 24 条
  • [1] Radial symmetry results for fractional Laplacian systems
    Liu, Baiyu
    Ma, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 146 : 120 - 135
  • [2] Radial symmetry and monotonicity for fractional Henon equation in Rn
    Wang, Pengyan
    Dai, Zhaohui
    Cao, Linfen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (12) : 1685 - 1695
  • [3] Weighted critical exponents of Sobolev-type embeddings for radial functions
    Su, Jiabao
    Wang, Cong
    ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 143 - 158
  • [4] A Liouville theorem and radial symmetry for dual fractional parabolic equations
    Guo, Yahong
    Ma, Lingwei
    Zhang, Zhenqiu
    ANALYSIS AND APPLICATIONS, 2024, 22 (04) : 791 - 814
  • [5] Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems
    Chen, Wenxiong
    Zhu, Jiuyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 744 - 753
  • [6] RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY
    Cao, Linfen
    Wang, Xiaoshan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1449 - 1460
  • [7] RADIAL SYMMETRY OF GROUND STATES FOR A REGIONAL FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Felmer, Patricio
    Torres, Cesar
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2395 - 2406
  • [8] Radial Symmetry for Weak Positive Solutions of Fractional Laplacian with a Singular Nonlinearity
    Wang, Xing
    Zhang, Li
    SYMMETRY-BASEL, 2018, 10 (12):
  • [9] Proposal for Use of the Fractional Derivative of Radial Functions in Interpolation Problems
    Torres-Hernandez, Anthony
    Brambila-Paz, Fernando
    Ramirez-Melendez, Rafael
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [10] Radial symmetry of entire solutions of a bi-harmonic equation with exponential nonlinearity
    Guo, Zongming
    Huang, Xia
    Zhou, Feng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (07) : 1972 - 2004