Counterexamples to the local–global divisibility over elliptic curves

被引:0
|
作者
Gabriele Ranieri
机构
[1] Pontificia Universidad Católica de Valparaíso,Instituto de Matemáticas
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷
关键词
Elliptic curves; Local–global; Galois cohomology; 11R34; 11G05;
D O I
暂无
中图分类号
学科分类号
摘要
Let p≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 5$$\end{document} be a prime number. We find all the possible subgroups G of GL2(Z/pZ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{GL}_2 ({\mathbb Z}/ p {\mathbb Z})$$\end{document} such that there exist a number field k and an elliptic curve E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}$$\end{document} defined over k such that the Gal(k(E[p])/k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Gal}(k ({\mathcal {E}}[p])/k)$$\end{document}-module E[p]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}[p]$$\end{document} is isomorphic to the G-module (Z/pZ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb Z}/ p {\mathbb Z})^2$$\end{document} and there exists n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in {\mathbb N}$$\end{document} such that the local–global divisibility by pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^n$$\end{document} does not hold over E(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}(k)$$\end{document}.
引用
收藏
页码:1215 / 1225
页数:10
相关论文
共 50 条
  • [31] Local-global questions for divisibility in commutative algebraic groups
    Roberto Dvornicich
    Laura Paladino
    European Journal of Mathematics, 2022, 8 : 599 - 628
  • [32] EXCEPTIONAL ELLIPTIC CURVES OVER QUARTIC FIELDS
    Najman, Filip
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (05) : 1231 - 1246
  • [33] Exponential sums over points of elliptic curves
    Ahmadi, Omran
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2014, 140 : 299 - 313
  • [34] QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Achter, Jeffrey D.
    Wong, Siman
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1395 - 1412
  • [35] GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04): : 657 - 670
  • [36] Modules Over the Noncommutative Torus and Elliptic Curves
    Francesco D’Andrea
    Gaetano Fiore
    Davide Franco
    Letters in Mathematical Physics, 2014, 104 : 1425 - 1443
  • [37] Bilinear character sums over elliptic curves
    Shparlinski, Igor
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 132 - 141
  • [38] Infinite rank of elliptic curves over Qab
    Im, Bo-Hae
    Larsen, Michael
    ACTA ARITHMETICA, 2013, 158 (01) : 49 - 59
  • [39] Orchards in elliptic curves over finite fields
    Padmanabhan, R.
    Shukla, Alok
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [40] Modules Over the Noncommutative Torus and Elliptic Curves
    D'Andrea, Francesco
    Fiore, Gaetano
    Franco, Davide
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (11) : 1425 - 1443