Geometric polynomials: properties and applications to series with zeta values

被引:0
作者
Kh. N. Boyadzhiev
A. Dil
机构
[1] Ohio Northern University,Department of Mathematics and Statistics
[2] Akdeniz University,Department of Mathematics
来源
Analysis Mathematica | 2016年 / 42卷
关键词
geometric polynomial; geometric series; binomial series; Hurwitz zeta function; Riemann zeta function; Lerch transcendent; 11B83; 11M35; 33B99; 40A25;
D O I
暂无
中图分类号
学科分类号
摘要
We provide several properties of the geometric polynomials discussed in earlier works of the authors. Further, the geometric polynomials are used to obtain a closed form evaluation of certain series involving Riemann’s zeta function.
引用
收藏
页码:203 / 224
页数:21
相关论文
共 8 条
[1]  
Boyadzhiev K.h. N.(2005)A series transformation formula and related polynomials Int. J. Math. Math. Sci. 2005 3849-3866
[2]  
Boyadzhiev K.h. N.(2011)Series transformation formulas of Euler type, Hadamard product of functions, and harmonic number identities Indian J. Pure Appl. Math. 42 371-387
[3]  
Boyadzhiev K.h. N.(2008)Apostol–Bernoulli functions, derivative polynomials, and Eulerian polynomials Adv. Appl. Discrete Math. 1 109-122
[4]  
Boyadzhiev K.h. N.(2014)Power series with binomial sums and asymptotic expansions Int. J. Math. Anal. 8 1389-1414
[5]  
Boyadzhiev K.h. N.(2012)Close encounters with the Stirling numbers of the second kind Math. Magazine 85 252-266
[6]  
Dil A.(2011)Polynomials related to harmonic numbers and evaluation of harmonic number series II Appl. Anal. Discrete Math. 5 212-229
[7]  
Kurt V.(2008)A note about the Pochhammer symbol Math. Morav. 12 37-42
[8]  
Petojevic A.(undefined)undefined undefined undefined undefined-undefined