Entropy and algorithmic complexity in quantum information theory

被引:7
作者
Benatti F. [1 ]
机构
[1] Department of Theoretical Physics, University of Trieste, 34014 Trieste
关键词
Algorithmic complexity; Classical and quantum information;
D O I
10.1007/s11047-006-9017-5
中图分类号
学科分类号
摘要
A theorem of Brudno says that the entropy production of classical ergodic information sources equals the algorithmic complexity per symbol of almost every sequence emitted by such sources. The recent advances in the theory and technology of quantum information raise the question whether a same relation may hold for ergodic quantum sources. In this paper, we discuss a quantum generalization of Brudno's result which connects the von Neumann entropy rate and a recently proposed quantum algorithmic complexity. © Springer Science+Business Media, Inc. 2006.
引用
收藏
页码:133 / 150
页数:17
相关论文
共 26 条
[1]  
Adleman L.M., Demarrais J., Huang M.A., Quantum computability, SIAM Journal on Computing, 26, pp. 1524-1540, (1997)
[2]  
Alicki R., Fannes M., Quantum Dynamical Systems, (2001)
[3]  
Alicki R., Narnhofer H., Comparison of dynamical entropies for the noncommutative shifts, Letters in Mathematical Physics, 33, pp. 241-247, (1995)
[4]  
Alekseev V.M., Yakobson M.V., Symbolic dynamics and hyperbolic dynamic systems, Physics Reports, 75, (1981)
[5]  
Benatti F., Krueger T., Mueller M., Siegmund-Schultze R., Szkoa A., Entropy and Algorithmic Complexity in Quantum Information Theory: A Quantum Brudno's Theorem, Commun. Math. Phys., 265, pp. 437-461, (2006)
[6]  
Bernstein E., Vazirani U., Quantum complexity theory, SIAM Journal on Computing, 26, pp. 1411-1473, (1997)
[7]  
Berthiaume A., Van Dam W., Laplante S., Quantum Kolmogorov complexity, Journal of Computer and System Sciences, 63, pp. 201-221, (2001)
[8]  
Billingsley P., Ergodic Theory and Information, Wiley Series in Probability and Mathematical Statistics, (1965)
[9]  
Bjelakovic I., Kruger T., Siegmund-Schultze Ra., Szkoa A., Chained Typical Subspaces-a Quantum Version of Breiman's, (2003)
[10]  
Bjelakovic I., Kruger T., Siegmund-Schultze Ra., Szkoa A., The Shannon-McMillan theorem for ergodic quantum lattice systems, Inventiones Mathematicae, 155, pp. 203-222, (2004)