A Posteriori Local Discontinuous Galerkin Error Estimation for Two-Dimensional Convection–Diffusion Problems

被引:2
作者
Mahboub Baccouch
Slimane Adjerid
机构
[1] University of Nebraska at Omaha,Department of Mathematics
[2] Virginia Tech,Department of Mathematics
来源
Journal of Scientific Computing | 2015年 / 62卷
关键词
Local discontinuous Galerkin method; Convection–diffusion problems; Superconvergence; A posteriori error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We present a simple, efficient, and asymptotically correct a posteriori error estimates for a minimal dissipation local discontinuous Galerkin method applied to two-dimensional diffusion and convection–diffusion problems on rectangular meshes. The finite element spaces are obtained by performing a local error analysis and a posteriori error estimates are computed by solving local problems on each element. We present computational results for several problems to show the efficiency and accuracy of our error estimates. It is shown that even in the presence of boundary layers our error estimates converge to the true error under mesh refinement when Shishkin meshes are used.
引用
收藏
页码:399 / 430
页数:31
相关论文
共 43 条
[1]  
Adjerid S(2007)The discontinuous Galerkin method for two-dimensional hyperbolic problems. I J. Sci. Comput. 33 75-113
[2]  
Baccouch M(2009)The discontinuous Galerkin method for two-dimensional hyperbolic problems. II: a posteriori error estimation J. Sci. Comput. 38 15-49
[3]  
Adjerid S(2010)Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem Appl. Numer. Math. 60 903-914
[4]  
Baccouch M(2012)A superconvergent local discontinuous Galerkin method for elliptic problems J. Sci. Comput. 52 113-152
[5]  
Adjerid S(2002)A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems Comput. Methods Appl. Mech. Eng. 191 1097-1112
[6]  
Baccouch M(2005)Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems J. Sci. Comput. 22 5-24
[7]  
Adjerid S(2002)A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems Comput. Methods Appl. Mech. Eng. 191 5877-5897
[8]  
Baccouch M(2012)A local discontinuous Galerkin method for the second-order wave equation Comput. Methods Appl. Mech. Eng. 209–212 129-143
[9]  
Adjerid S(2014)Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection-diffusion problems Appl. Math. Comput. 226 455-483
[10]  
Devine KD(2014)Global convergence of a posteriori error estimates for a discontinuous Galerkin method for one-dimensional linear hyperbolic problems Int. J. Numer. Anal. Model. 11 172-193