Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory

被引:0
作者
G. Bergner
I. Montvay
G. Münster
U. D. Özugurel
D. Sandbrink
机构
[1] Universität Frankfurt,
[2] Institut für Theoretische Physik,undefined
[3] Deutsches Elektronen-Synchrotron DESY,undefined
[4] Universität Münster,undefined
[5] Institut für Theoretische Physik,undefined
来源
Journal of High Energy Physics | / 2013卷
关键词
Supersymmetric gauge theory; Lattice Gauge Field Theories; Lattice Quantum Field Theory; Lattice QCD;
D O I
暂无
中图分类号
学科分类号
摘要
The non-perturbative properties of supersymmetric theories are of interest for elementary particle physics beyond the Standard Model. Numerical simulations of these theories are associated with theoretical and technical challenges. The minimal supersymmetric model containing gauge fields is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=1 $\end{document} supersymmetric Yang-Mills theory. We present the results of our investigations of the masses of the lightest particles of this model on a lattice. The central question is, whether a continuum limit exists with unbroken supersymmetry. In this case the bound states would form mass-degenerate supermultiplets. We have obtained the masses of the gluino-glue particle, mesonic states, and the scalar glueball at a fine lattice spacing. The statistical accuracy as well as the control of finite size effects and lattice artefacts are significantly better than in all previous investigations. Taking the statistical and systematic uncertainties into account, the masses of the fermionic and bosonic states in our present calculations are consistent with the formation of degenerate supermultiplets, indicating that in the continuum limit there is no spontaneous supersymmetry breaking. This new finding is in contrast to previous results.
引用
收藏
相关论文
共 32 条
[1]  
Demmouche K(2010)Simulation of 4D N = 1 supersymmetric Yang-Mills theory with Symanzik improved gauge action and stout smearing Eur. Phys. J. C 69 147-undefined
[2]  
Amati D(1988)Nonperturbative aspects in supersymmetric gauge theories Phys. Rept. 162 169-undefined
[3]  
Konishi K(2009)QCD and supersymmetry Nucl. Phys. Proc. Suppl. 195 46-undefined
[4]  
Meurice Y(2012)The gluino-glue particle and finite size effects in supersymmetric Yang-Mills theory JHEP 09 108-undefined
[5]  
Rossi G(2010)Complete supersymmetry on the lattice and a No-Go theorem JHEP 01 024-undefined
[6]  
Veneziano G(1987)Supersymmetry and the lattice: a reconciliation? Nucl. Phys. B 292 555-undefined
[7]  
Armoni A(2012)Supersymmetry, chiral symmetry and the generalized BRS transformation in lattice formulations of 4D Nucl. Phys. B 861 290-undefined
[8]  
Bergner G(1982) SYM Phys. Lett. B 113 231-undefined
[9]  
Bergner G(1998)An effective lagrangian for the pure N = 1 supersymmetric Yang-Mills theory Phys. Rev. D 58 015009-undefined
[10]  
Curci G(2004)On the effective action of N = 1 supersymmetric Yang-Mills theory Phys. Rev. D 69 054501-undefined