Class-preserving automorphisms of finite p-groups II

被引:0
作者
Manoj K. Yadav
机构
[1] Harish-Chandra Research Institute,School of Mathematics
来源
Israel Journal of Mathematics | 2015年 / 209卷
关键词
Normal Subgroup; Maximal Subgroup; Nilpotent Group; Commutator Subgroup; Nilpotency Class;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group minimally generated by d(G) elements and Autc(G) denote the group of all (conjugacy) class-preserving automorphisms of G. Continuing our work [Class preserving automorphisms of finite p-groups, J. London Math. Soc. 75 (2007), 755–772], we study finite p-groups G such that |Autc(G)| = |γ2(G)|d(G), where γ2(G) denotes the commutator subgroup of G. If G is such a p-group of class 2, then we show that d(G) is even, 2d(γ2(G)) ≤ d(G) and G/ Z(G) is homocyclic. When the nilpotency class of G is larger than 2, we obtain the following (surprising) results: (i) d(G) = 2. (ii) If |γ2(G)/γ3(G)| > 2, then |Autc(G)| = |γ2(G)|d(G) if and only if G is a 2-generator group with cyclic commutator subgroup, where γ3(G) denotes the third term in the lower central series of G. (iii) If |γ2(G)/γ3(G)| = 2, then |Autc(G)| = |γ2(G)|d(G) if and only if G is a 2-generator 2-group of nilpotency class 3 with elementary abelian commutator subgroup of order at most 8. As an application, we classify finite nilpotent groups G such that the central quotient G/ Z(G) of G by its center Z(G) is of the largest possible order. For proving these results, we introduce a generalization of Camina groups and obtain some interesting results. We use Lie theoretic techniques and computer algebra system ‘Magma’ as tools.
引用
收藏
页码:355 / 396
页数:41
相关论文
共 26 条
  • [1] Adney J. E.(1965)Automorphisms of a p-group Illinois Journal of Mathematics 9 137-143
  • [2] Yen T.(2012)Class preserving automorphisms of unitriangular groups International Journal of Algebra and Computation 22 1250023-265
  • [3] Bardakov V.(1997)The Magma algebra system. I. The user language Journal of Symbolic Computation 24 235-416
  • [4] Vesnin A.(1969)On certain abelian-by-nilpotent varieties Bulletin of the Australian Mathematical Society 1 403-42
  • [5] Yadav M. K.(1913)On the outer isomorphisms of a group Proceedings of the London Mathematical Society 11 40-160
  • [6] Bosma W.(1978)Some conditions which almost characterize Frobenius groups Israel Journal of Mathematics 31 153-298
  • [7] Cannon J.(1982)On finite p-groups with cyclic commutator subgroup Archiv der Mathematik 39 295-75
  • [8] Playoust C.(1935)Demonstration d’une hypothese de M. Artin Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 11 73-802
  • [9] Brady J. M.(1996)On Camina groups of prime power order Journal of Algebra 181 787-141
  • [10] Bryce R. A.(1940)The classification of prime power groups Journal für die Reine und Angewandte Mathematik 182 130-616