Spectral Analysis of Singular Matrix-Valued Sturm–Liouville Operators

被引:0
作者
Bilender P. Allahverdiev
机构
[1] Suleyman Demirel University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2019年 / 16卷
关键词
Singular matrix-valued Sturm–Liouville equation; symmetric operator; space of boundary values; self-adjoint and nonself-adjoint extensions; self-adjoint dilation; scattering matrix; functional model; characteristic function; completeness of the system of root vectors; Primary 34B40; 34B24; 34L10; 47A20; Secondary 47A40; 47A45; 47E05; 47B25; 47B44;
D O I
暂无
中图分类号
学科分类号
摘要
In the Hilbert space LW2([a,b);E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{W}^{2}([a,b);E)$$\end{document} (-∞<a<b≤+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\infty<a<b\le +\infty ,$$\end{document}dimE=N<+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim E=N<+\infty ,$$\end{document}W>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W>0$$\end{document}) a space of boundary values of the symmetric singular matrix-valued Sturm–Liouville operator with maximal deficiency indices (2N, 2N) (in limit-circle case at singular end point b) is constructed. With the help of the boundary conditions at a and b, all maximal dissipative, maximal accumulative and self-adjoint extensions of such a symmetric operator are established. In particular, the maximal dissipative operators with separated boundary conditions, called ‘dissipative at a’ and ‘self-adjoint at b’ are investigated. A self-adjoint dilation of the dissipative operator is constructed and then its incoming and outgoing spectral representations are determined. This representation allows us to determine the scattering matrix of the dilation with the help of the Weyl matrix-valued function of a self-adjoint matrix-valued Sturm–Liouville operator. Further a functional model of the dissipative operator is determined and its characteristic function in terms of the scattering matrix of the dilation (or of the Weyl function) is established. Finally, a theorem on completeness of the system of root vectors of the dissipative operator is proved.
引用
收藏
相关论文
共 38 条
[1]  
Allahverdiev BP(2004)Dissipative Schrödinger operators with matrix potentials Potential Anal. 20 303-315
[2]  
Allahverdiev BP(2012)Nonselfadjoint Sturm–Liouville operators in limit-circle case Taiwan. J. Math. 16 2035-2052
[3]  
Allahverdiev BP(2017)Extensions, dilations and spectral analysis of singular Sturm–Liouville operators Math. Rep. 19 225-243
[4]  
Allakhverdiev BP(1993)On the theory of nonselfadjoint operators of Schrödinger type with a matrix potential Russ. Acad. Sci. Izv. Math. 41 193-205
[5]  
Anderson RL(1976)Limit point and limit circle criteria for a class of singular symmetric differential operators Can. J. Math. 28 905-914
[6]  
Baro M(2003)Dissipative Schrödinger-type operators as a model for generation and recombination J. Math. Phys. 44 2373-2401
[7]  
Neidhardt H(1979)On the Indian J. Pure Appl. Math. 10 804-809
[8]  
Bhagat B(1982) classification of a second-order matrix differential equation Indian J. Pure Appl. Math. 13 433-439
[9]  
Bhagat B(1976)Deficiency indices of second-order matrix differential operators Mat. Sb. 100 210-216
[10]  
Swesi G(2001)On a class of boundary-value problems with a spectral parameter in the boundary conditions Proc. Lond. Math. Soc. 82 701-724