Constraints of f(R) gravity in Palatini approach with observational Hubble data

被引:0
作者
ZhongXu Zhai
WenBiao Liu
机构
[1] Beijing Normal University,Department of Physics, Institute of Theoretical Physics
来源
Science China Physics, Mechanics and Astronomy | 2011年 / 54卷
关键词
(; ) gravity; OHD; CMB; BAO; accelerating expansion; dark energy;
D O I
暂无
中图分类号
学科分类号
摘要
We use the newly released observational H(z) data (OHD), the Cosmic Microwave Background (CMB) shift parameter, and the Baryon Acoustic Oscillation (BAO) measurements data to constrain cosmological parameters of f(R) gravity in Palatini formalism in which the f(R) form is defined as f(R) = R − β/Rn. Under the assumption of a spatially flat FRW universe, we get the best fitting results of the free parameters (Ωm0, n). In the calculation, we marginalize the likelihood function over H0 by integrating the probability density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P \propto e^{{{ - \chi ^2 } \mathord{\left/ {\vphantom {{ - \chi ^2 } 2}} \right. \kern-\nulldelimiterspace} 2}} $ \end{document} to obtain the best fitting results and the confidence regions in the Ωm0-n plane. The constraints results of (Ωm0, n) = (0.33, 0.41) by OHD only and (Ωm0, n) = (0.23, 0.08) by the combination of OHD+CMB+BAO both indicate that the universe goes through three last phases, i.e., radiation dominated, matter-dominated, and late time accelerated expansion without introduction of dark energy.
引用
收藏
页码:1378 / 1383
页数:5
相关论文
共 102 条
[1]  
Riess A. G.(1998)Observational evidence from supernovae for an accelerating universe and a cosmological constant Astrophys J 116 1009-1038
[2]  
Filippenko A. V.(2009)Improved dark energy constraints from 100 new CfA supernova type Ia light curves Astrophys J 700 1097-1140
[3]  
Challis P.(2007)Wilkinson microwave anisotropy probe (WMAP) three year results: Implications for cosmology Astrophys J Suppl Ser 170 377-408
[4]  
Hicken M.(2011)Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation Astrophys J Suppl Ser 192 18-574
[5]  
Wood-Vasey W. M.(2005)Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies Astrophys J 633 560-2168
[6]  
Blondin S.(2010)Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample Mon Not Roy Astron Soc 401 2148-8
[7]  
Spergel D. N.(2004)New dark energy constraints from supernovae, microwave background and galaxy clustering Phys Rev Lett 92 241302-102
[8]  
Bean R.(1970)Non-linear lagrangians and cosmological theory Mon Not Roy Astron Soc 150 1-469
[9]  
Doré O.(1980)A new type of isotropic cosmological models without singularity Phys Lett B 91 99-518
[10]  
Komatsu E.(1982)Cosmology without singularity and nonlinear gravitational Lagrangians Gen Relativ Gravit 14 453-966