Time-decay Estimates for Keller-Segel System

被引:0
作者
Zhen Bin Cao
Xiao Feng Liu
Meng Wang
机构
[1] Zhejiang University,School of Mathematical Sciences
[2] Donghua University,College of Science, Institute for Nonlinear Sciences
来源
Acta Mathematica Sinica, English Series | 2021年 / 37卷
关键词
Chemotaxis; parabolic system; global solutions; long time asymptotic behavior; 35B45; 35K15; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
For the Cauchy problem to Keller-Segel system, we show well-posedness and time-decay estimates in the critical scaling-invariant Besov spaces by using Littlewood-Paley analysis together with the decay estimates of heat kernels.
引用
收藏
页码:666 / 674
页数:8
相关论文
共 13 条
[1]  
Carrapatosoa K(2017)Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation Comm. Partial Differential Equations 42 291-345
[2]  
Mischlerb S(2010)Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity Comm. Pure Appl. Math. 63 1173-1224
[3]  
Chen Q(2014)Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane J. Differential Equations 257 1840-1878
[4]  
Miao C(2005)On the uniqueness in critical spaces for compressible Navier-Stokes equations NoDEA Nonlinear Differential Equations Appl. 12 111-128
[5]  
Zhang Z(2017)Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Arch. Ration. Mech. Anal. 224 53-90
[6]  
Corrias L(2003) framework Jahresber. Deutsch. Math. Verein. 105 103-165
[7]  
Escobedo M(2004)From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I Jahresber. Deutsch. Math. Verein. 106 51-69
[8]  
Matos J(undefined)From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II undefined undefined undefined-undefined
[9]  
Danchin R(undefined)undefined undefined undefined undefined-undefined
[10]  
Danchin R(undefined)undefined undefined undefined undefined-undefined