On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds

被引:0
作者
Alexander Grigor’yan
Yuhua Sun
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] University of Bielefeld,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2019年 / 58卷
关键词
Primary 58J05; Secondary 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the critical exponent for certain semi-linear elliptic problem on a Riemannian manifold assuming the volume regularity and Green function estimates.
引用
收藏
相关论文
共 50 条
  • [21] Netrusov Y(2017)Nonexistence results for elliptic differential inequalities with a potential on Riemannian manifolds Math. Ann. 367 929-963
  • [22] Yau S-T(1998)Nonexistence of solutions to parabolic differential inequalities with a potential on Riemannian manifolds Dokl. Akad. Nauk. 359 456-460
  • [23] Grigor’yan A(1999)Absence of global positive solutions of quasilinear elliptic inequalities Proc. Steklov Inst. Math. 227 186-216
  • [24] Sun Y(2014)Nonexistence of positive solutions for quasilinear elliptic problems on J. Math. Anal. Appl. 419 643-661
  • [25] Hebisch W(2016)Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian manifolds Ann. Inst. H. Poincaré Anal. Non Linéaire 33 1497-1507
  • [26] Saloff-Coste L(undefined)A constructive approach to positive solutions of undefined undefined undefined-undefined
  • [27] Kanai M(undefined) on Riemannian manifolds undefined undefined undefined-undefined
  • [28] Kanai M(undefined)undefined undefined undefined undefined-undefined
  • [29] Kondratiev V(undefined)undefined undefined undefined undefined-undefined
  • [30] Liskevich V(undefined)undefined undefined undefined undefined-undefined