Dynamic response and damage analysis of fiber-reinforced composite laminated plates under low-velocity oblique impact

被引:0
|
作者
Yiqi Mao
Li Hong
Shigang Ai
Hailong Fu
Changping Chen
机构
[1] Xiamen University of Technology,Department of Civil and Architecture Engineering
[2] Beijing Jiaotong University,School of Civil Engineering
[3] Northeast Petroleum University,School of Mechanical Science and Engineering
来源
Nonlinear Dynamics | 2017年 / 87卷
关键词
Fiber-reinforced composite laminated plates; Oblique impact; Dynamic response; Damage analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Fiber-reinforced composite laminates (FRCL) is susceptible to the external impacting. Understanding the crack propagation and structural mechanical properties of the damaged FRCL under low-velocity oblique impact is of great value in practical application. A new analytical dynamic model is developed in this work to research the dynamic response and damage property of FRCL under oblique impacting. The displacement field and strain–displacement relations of the FRCL are established by utilizing higher-order shear plate theory. The matrix damage and fiber rupture in FRCL under oblique impacting are captured by an internal variable-based continuum damage constitutive relation. To accurately predict the oblique impacting force, an analytical dynamic impacting model is proposed basing on a developed contact model, where normal and tangential contact is coupled and solved simultaneously. The whole initial boundary value problem is iteratively solved by synthetically using finite differential method and Newmark-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} method. The solving convergence and accuracy of the model is demonstrated and validated. Simulations show that the matrix damage is more easily to appear in FRCL under shear force due to oblique contact when under oblique impacting, and the damage profile is different from normal impacting. The dynamic responses of the FRCL plate under oblique impacting differ also greatly from normal impacting. The current research provides a theoretical basis for FRCL design and its engineering application when under low-velocity impacting.
引用
收藏
页码:1511 / 1530
页数:19
相关论文
共 50 条
  • [1] Dynamic response and damage analysis of fiber-reinforced composite laminated plates under low-velocity oblique impact
    Mao, Yiqi
    Hong, Li
    Ai, Shigang
    Fu, Hailong
    Chen, Changping
    NONLINEAR DYNAMICS, 2017, 87 (03) : 1511 - 1530
  • [2] Investigation of the effect of surface crack on low-velocity impact response in hybrid laminated composite plates
    Aydın Güneş
    Ömer Sinan Şahin
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [3] Investigation of the effect of surface crack on low-velocity impact response in hybrid laminated composite plates
    Gunes, Aydin
    Sahin, Omer Sinan
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (06)
  • [4] Damage analysis in composite laminates under low velocity oblique impact
    Zhang C.
    Liu J.
    Fang X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (12): : 2388 - 2397
  • [5] Damage characteristics in laminated composite structures subjected to low-velocity impact
    Stamoulis, Konstantinos
    Georgantzinos, Stelios K.
    Giannopoulos, G. I.
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2020, 11 (05) : 670 - 685
  • [6] Oblique Low-Velocity Impact Response and Damage Behavior of Carbon-Epoxy Composite Laminates
    Sun, Jin
    Huang, Linhai
    Zhao, Junhua
    MATERIALS, 2022, 15 (15)
  • [7] A dynamic response prediction model of fiber-metal hybrid laminated plates embedded with viscoelastic damping core under low-velocity impact excitation
    Li Z.
    Li H.
    Wang D.
    Ren C.
    Zu X.
    Zhou J.
    Guan Z.
    Wang X.
    1690, Chinese Society of Theoretical and Applied Mechanics (52): : 1690 - 1699
  • [8] Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells
    Khalili, S. M. R.
    Soroush, M.
    Davar, A.
    Rahmani, O.
    COMPOSITE STRUCTURES, 2011, 93 (05) : 1363 - 1375
  • [9] Modelling Analysis on Mechanical Damage of Kenaf Reinforced Composite Plates under Oblique Impact Loadings
    Roslan, M. N.
    Ismail, A. E.
    Hashim, M. Y.
    Zainulabidin, M. H.
    Khalid, S. N. A.
    4TH MECHANICAL AND MANUFACTURING ENGINEERING, PTS 1 AND 2, 2014, 465-466 : 1324 - 1328
  • [10] Low-velocity impact response and inspection of damage propagation for basalt fiber reinforced filament wound pipes
    Demirci, Mehmet T.
    Sahin, Omer S.
    POLYMER COMPOSITES, 2022, 43 (07) : 4626 - 4644