Collocation methods for general Riemann-Liouville two-point boundary value problems

被引:0
作者
Hui Liang
Martin Stynes
机构
[1] Shenzhen University,College of Mathematics and Statistics
[2] Beijing Computational Science Research Center,undefined
来源
Advances in Computational Mathematics | 2019年 / 45卷
关键词
Fractional derivative; Riemann-Liouville derivative; Two-point boundary value problem; Volterra integral equation; Collocation methods; 65L10; 65R10; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
General Riemann-Liouville linear two-point boundary value problems of order αp, where n − 1 < αp < n for some positive integer n, are investigated on the interval [0,b]. It is shown first that the natural degree of regularity to impose on the solution y of the problem is y∈Cn−2[0,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y\in C^{n-2}[0,b]$\end{document} and Dαp−1y∈C[0,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha _{p}-1}y\in C[0,b]$\end{document}, with further restrictions on the behavior of the derivatives of y(n− 2) (these regularity conditions differ significantly from the natural regularity conditions in the corresponding Caputo problem). From this regularity, it is deduced that the most general choice of boundary conditions possible is y(0)=y′(0)=…=y(n−2)(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y(0) = y^{\prime }(0) = {\dots } = y^{(n-2)}(0) = 0$\end{document} and ∑j=0n1βjy(j)(b1)=γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{j = 0}^{n_{1}}\beta _{j}y^{(j)}(b_{1}) =\gamma $\end{document} for some constants βj and γ, with b1 ∈ (0,b] and n1∈{0,1,…,n−1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n_{1}\in \{0, 1, \dots , n-1\}$\end{document}. A wide class of transformations of the problem into weakly singular Volterra integral equations (VIEs) is then investigated; the aim is to choose the transformation that will yield the most accurate results when the VIE is solved using a collocation method with piecewise polynomials. Error estimates are derived for this method and for its iterated variant. Numerical results are given to support the theoretical conclusions.
引用
收藏
页码:897 / 928
页数:31
相关论文
共 16 条
  • [1] Brunner H(2001)Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 957-982
  • [2] Pedas A(2017)Analysis and numerical solution of a Riemann-Liouville fractional derivarive two-point boundary value problem Adv. Comput. Math. 43 77-99
  • [3] Vainikko G(2018)Collocation methods for general Caputo two-point boundary value problems J. Sci. Comput. 76 390-425
  • [4] Kopteva N(2011)Spline collocation methods for linear multi-term fractional differential equations J. Comput. Appl Math. 236 167-176
  • [5] Stynes M(2012)Piecewise polynomial collocation for linear boundary value problems of fractional differential equations J. Comput. Appl. Math. 236 3349-3359
  • [6] Liang H(1938)Existence theorems for solutions of differential equations of non-integral order Bull. Amer. Math Soc. 44 100-107
  • [7] Stynes M(2016)Which functions are fractionally differentiable? Z Anal. Anwend. 35 465-487
  • [8] Pedas A(2017)Wellposedness of N,eumann boundary-value problems of space-fractional differential equations Fract. Calc. Appl Anal. 20 1356-1381
  • [9] Tamme E(undefined)undefined undefined undefined undefined-undefined
  • [10] Pedas A(undefined)undefined undefined undefined undefined-undefined