Asymptotics of Orthogonal Polynomials for a Weight with a Jump on [−1,1]

被引:0
作者
A. Foulquié Moreno
A. Martínez-Finkelshtein
V. L. Sousa
机构
[1] University of Aveiro,Department of Mathematics and Center of Research and Development in Mathematics and Applications
[2] University of Almería,Department of Statistics and Applied Mathematics
[3] Granada University,Instituto Carlos I de Física Teórica y Computacional
[4] University of Aveiro,Escola Secundária João da Silva Correia, and Center of Research and Development in Mathematics and Applications
来源
Constructive Approximation | 2011年 / 33卷
关键词
Orthogonal polynomials; Asymptotics; Riemann–Hilbert analysis; Zeros; Local behavior; Confluent hypergeometric functions; Reproducing kernel; Universality; de Branges space; 42C05; 30C15; 33C15; 41A60; 46E22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the orthogonal polynomials on [−1,1] with respect to the weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_c(x)=h(x)(1-x)^{\alpha}(1+x)^{\beta} \varXi _{c}(x),\quad\alpha,\beta>-1,$$\end{document} where h is real analytic and strictly positive on [−1,1] and Ξc is a step-like function: Ξc(x)=1 for x∈[−1,0) and Ξc(x)=c2, c>0, for x∈[0,1]. We obtain strong uniform asymptotics of the monic orthogonal polynomials in ℂ, as well as first terms of the asymptotic expansion of the main parameters (leading coefficients of the orthonormal polynomials and the recurrence coefficients) as n→∞. In particular, we prove for wc a conjecture of A. Magnus regarding the asymptotics of the recurrence coefficients. The main focus is on the local analysis at the origin. We study the asymptotics of the Christoffel–Darboux kernel in a neighborhood of the jump and show that the zeros of the orthogonal polynomials no longer exhibit clock behavior.
引用
收藏
页码:219 / 263
页数:44
相关论文
共 33 条
[1]  
Baik J.(2000)On the distribution of the length of the second row of a Young diagram under Plancherel measure Geom. Funct. Anal. 10 702-731
[2]  
Deift P.(2001)Infinite random matrices and ergodic measures Commun. Math. Phys. 223 87-123
[3]  
Johansson K.(1993)A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation Ann. Math. 137 295-368
[4]  
Borodin A.(1995)Asymptotics for the Painlevé II equation Commun. Pure Appl. Math. 48 277-337
[5]  
Olshanski G.(1997)New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems Int. Math. Res. Not. 6 286-299
[6]  
Deift P.(1999)Strong asymptotics of orthogonal polynomials with respect to exponential weights Commun. Pure Appl. Math. 52 1491-1552
[7]  
Zhou X.(1992)The isomonodromy approach to matrix models in 2D quantum gravity Commun. Math. Phys. 147 395-430
[8]  
Deift P.A.(2010)On a Conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials J. Approx. Theory 162 807-831
[9]  
Zhou X.(2008)Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump Contemp. Math. 458 215-247
[10]  
Deift P.(2004)The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1] Adv. Math. 188 337-398