Superstability of the equation of quadratic functionals in L p-spaces

被引:0
作者
Czerwik S. [1 ]
Dłutek K. [1 ]
机构
[1] Institute of Mathematics, Silesian University of Technology, PL-44-100 Gliwice
关键词
L[!sup]p[!/sup]-spaces; Quadratic functional equation; Stability;
D O I
10.1007/s00010-002-8019-3
中图分类号
学科分类号
摘要
Let (X, μ) be an abelian complete measurable group with μ(X) = +∞, and let E be a metric abelian group. Let f : X → E be a function. We will show that if Qf ∈ Lp+ (X × X, E), where Qf(x, y) = 2f(x) + 2f(y) - f(x + y) - f(x - y), x, y ∈ X, then there exists a quadratic function g : X → E, i.e. a function with 2g(x) + 2g(y) = g(x + y) + g(x - y), x, y ∈ X such that f is equal to g almost everywhere with respect to the measure μ. Lp+ denotes the space of functions for witch the upper integral of ∥f∥p is finite. © Birkhäuser Verlag, Basel, 2002.
引用
收藏
页码:210 / 219
页数:9
相关论文
共 16 条
[1]  
Cholewa P., Remarks on the stability of functional equations, Aequationes Math., 27, pp. 76-86, (1984)
[2]  
Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62, pp. 59-64, (1992)
[3]  
Czerwik S., The stability of quadratic functional equation, Stability of Mappings of Hyers-Ulam Type, pp. 81-91, (1994)
[4]  
Czerwik S., Dlutek K., -spaces
[5]  
Forti G.L., Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50, pp. 143-190, (1995)
[6]  
Ger R., On almost polynomial functions, Colloq. Math., 24, pp. 95-101, (1971)
[7]  
Ger R., Note on almost additive functions, Aequationes Math., 17, pp. 73-76, (1978)
[8]  
Ger R., A survey of recent results on stability of functional equations, Proc. of the 4th Internat. Conference on Functional Equations and Inequalities, pp. 5-36, (1994)
[9]  
Halmos R.R., Measure Theory, (1950)
[10]  
Hyers D.H., Isac G., Rassias Th.M., Stability of Functional Equations in Several Variables, (1998)