Review of low-temperature plasma nitrogen fixation technology

被引:0
|
作者
Hang Chen
Dingkun Yuan
Angjian Wu
Xiaoqing Lin
Xiaodong Li
机构
[1] Zhejiang University,State Key Laboratory of Clean Energy Utilization, Department of Energy Engineering
[2] China Jiliang University,College of Metrology and Measurement Engineering
来源
Waste Disposal & Sustainable Energy | 2021年 / 3卷
关键词
Plasma; Ammonia synthesis; Nitrogen oxides; Plasma activated water;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrogen fixation is essential for all forms of life, as nitrogen is required to biosynthesize fundamental building blocks of creatures, plants, and other life forms. As the main method of artificial nitrogen fixation, Haber–Bosch process (ammonia synthesis) has been supporting the agriculture and chemical industries since the 1910s. However, the disadvantages inherent to the Haber–Bosch process, such as high energy consumption and high emissions, cannot be ignored. Therefore, developing a green nitrogen fixation process has always been a research hotspot. Among the various technologies, plasma-assisted nitrogen fixation technology is very promising due to its small scale, mild reaction conditions, and flexible parameters. In the present work, the basic principles of plasma nitrogen fixation technology and its associated research progress are reviewed. The production efficiency of various plasmas is summarized and compared. Eventually, the prospect of nitrogen fixation using low-temperature plasma in the future was proposed.
引用
收藏
页码:201 / 217
页数:16
相关论文
共 50 条
  • [21] Hydrogen production by low-temperature plasma decomposition of liquids
    Bulychev, N. A.
    Kazaryan, M. A.
    Averyushkin, A. S.
    Chernou, A. A.
    Gusev, A. L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (33) : 20934 - 20938
  • [22] The 2017 Plasma Roadmap: Low temperature plasma science and technology
    Adamovich, I.
    Baalrud, S. D.
    Bogaerts, A.
    Bruggeman, P. J.
    Cappelli, M.
    Colombo, V.
    Czarnetzki, U.
    Ebert, U.
    Eden, J. G.
    Favia, P.
    Graves, D. B.
    Hamaguchi, S.
    Hieftje, G.
    Hori, M.
    Kaganovich, I. D.
    Kortshagen, U.
    Kushner, M. J.
    Mason, N. J.
    Mazouffre, S.
    Thagard, S. Mededovic
    Metelmann, H-R
    Mizuno, A.
    Moreau, E.
    Murphy, A. B.
    Niemira, B. A.
    Oehrlein, G. S.
    Petrovic, Z. Lj
    Pitchford, L. C.
    Pu, Y-K
    Rauf, S.
    Sakai, O.
    Samukawa, S.
    Starikovskaia, S.
    Tennyson, J.
    Terashima, K.
    Turner, M. M.
    van de Sanden, M. C. M.
    Vardelle, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
  • [23] Plasma-Driven Nitrogen Fixation on Sodium Hydride
    Wu, Han
    Yang, Liang
    Wen, Jiaqi
    Xu, Yongfeng
    Cai, Yongli
    Gao, Wenbo
    Wang, Qianru
    Guan, Yeqin
    Feng, Sheng
    Cao, Hujun
    He, Teng
    Liu, Lin
    Zhang, Shaoqian
    Guo, Jianping
    Chen, Ping
    ADVANCED ENERGY MATERIALS, 2023, 13 (27)
  • [24] The use of low-temperature plasma in a combined technology for the formation of wear-resistant boron-containing coatings
    Klopotov, A. A.
    Ivanov, Yu F.
    Potekaev, A., I
    Abzaev, Yu A.
    Kalashnikov, M. P.
    Chumaevskii, A., V
    Volokitin, O. G.
    Teresov, A. D.
    Vlasov, V. A.
    Klopotov, V. D.
    SURFACE & COATINGS TECHNOLOGY, 2020, 389
  • [25] Low-temperature plasma preparation and application of carbon black nanoparticles
    Yuan, J. J.
    Hong, R. Y.
    Wang, Y. Q.
    Feng, W. G.
    CHEMICAL ENGINEERING JOURNAL, 2014, 253 : 107 - 120
  • [26] Low-Temperature Underwater Plasma as an Instrument to Manufacture Inorganic Nanomaterials
    Agafonov, A., V
    Sirotkin, N. A.
    Titov, V. A.
    Khlyustova, A., V
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2022, 67 (03) : 253 - 261
  • [27] Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
    E. V. Bespala
    I. Yu. Novoselov
    A. O. Pavlyuk
    S. G. Kotlyarevskiy
    Thermophysics and Aeromechanics, 2018, 25 : 109 - 117
  • [28] Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
    Bespala, E. V.
    Novoselov, I. Yu.
    Pavlyuk, A. O.
    Kotlyarevskiy, S. G.
    THERMOPHYSICS AND AEROMECHANICS, 2018, 25 (01) : 109 - 117
  • [29] Treatment of textile in a low-temperature gas-discharge plasma
    Endiiarova, E. V.
    Eritsyan, G. S.
    MATERIALS TODAY-PROCEEDINGS, 2020, 30 : 516 - 519
  • [30] LOW-TEMPERATURE PLASMA DECOMPOSITION OF LIQUIDS UNDER ULTRASONIC ACTION
    Garibyan, Boris A.
    Kohlert, Victoria
    REVISTA INCLUSIONES, 2020, 7 : 74 - 81