Bifurcation and vibration resonance in the time delay Duffing system with fractional internal and external damping

被引:0
作者
RenMing Wang
HongMing Zhang
YunNing Zhang
机构
[1] China Three Gorges University,College of Electrical Engineering and New Energy
来源
Meccanica | 2022年 / 57卷
关键词
Duffing system; Time delay; Fractional double-damped; Bifurcation; Vibration resonance;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is focused on investigating the bifurcation and vibration resonance problems of fractional double-damping Duffing time delay system driven by external excitation signal with two wildly different frequencies ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Firstly, the approximate expressions of the critical bifurcation point and response amplitude Q at low-frequency ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} are obtained by means of the direct separation of the slow and fast motions. And then corresponding numerical simulation is made to show that it is a good agreement with the theoretical analysis. Next, the influence of system parameters, including internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, high-frequency amplitude F, and time delay size τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, on the vibration resonance is discussed. Some significant results are obtained. If the fractional orders α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are treated as a control parameter, then α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} can induce vibration resonance of the system in three different types when the response amplitude Q changes with the high-frequency amplitude F. If the high-frequency amplitude F is treated as a control parameter, then F can induce vibration resonance of the system as well at some particular points. If the time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is treated as a control parameter, not only can τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} induce three types of vibration resonance, but the response amplitude Q views periodically with τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. In addition, the resonance behaviors of the considered system are more abundant than those in other similar systems since the internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and cubic term coefficient β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} are introduced into the system which changes the shapes of the effective potential function.
引用
收藏
页码:999 / 1015
页数:16
相关论文
共 50 条
  • [41] Qualitative Analysis and Bifurcation in a Neuron System With Memristor Characteristics and Time Delay
    Xiao, Min
    Zheng, Wei Xing
    Jiang, Guoping
    Cao, Jinde
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 1974 - 1988
  • [42] Bifurcation control for a kind of non-autonomous system with time delay
    Qian Changzhao
    Wang Zhiwen
    Dong Chuangwen
    Liu Yang
    MECHANICAL ENGINEERING AND GREEN MANUFACTURING, PTS 1 AND 2, 2010, : 1752 - 1756
  • [43] Bifurcation of periodic Solution for May System with time delay
    Sun, Xiaoying
    Sun, Jifang
    EPLWW3S 2011: 2011 INTERNATIONAL CONFERENCE ON ECOLOGICAL PROTECTION OF LAKES-WETLANDS-WATERSHED AND APPLICATION OF 3S TECHNOLOGY, VOL 2, 2011, : 63 - 67
  • [44] Bifurcation and stability analysis of fractional quintic oscillator system with power damping term
    Ren, Zhongkai
    Yang, Jingbi
    Xie, Jiaquan
    Chen, Peng
    Liu, Xiao
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 148
  • [45] Chaos and bifurcation analysis of tumor-immune controlled system with time delay
    Wang, Danni
    Yang, Hongli
    Yang, Liangui
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 119 : 267 - 284
  • [46] Pointwise Damping and Time Delay in the Stabilization of a Mechanical System
    Danciu, Daniela
    Rasvan, Vladimir
    IFAC PAPERSONLINE, 2024, 58 (27): : 154 - 159
  • [47] Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators
    Leung, A. Y. T.
    Guo, Zhongjin
    Yang, H. X.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (10) : 2900 - 2915
  • [48] Chaos, Hopf bifurcation and control of a fractional-order delay financial system
    Shi, Jianping
    He, Ke
    Fang, Hui
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 348 - 364
  • [49] Bifurcation analysis in active control system with time delay feedback
    Peng, Jian
    Wang, Lianhua
    Zhao, Yueyu
    Zhao, Yaobing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 10073 - 10081
  • [50] The influence of two kinds of time delays on the vibrational resonance of a fractional Mathieu-Duffing oscillator
    Ning, Lijuan
    Guo, Wen
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):