Bifurcation and vibration resonance in the time delay Duffing system with fractional internal and external damping

被引:0
作者
RenMing Wang
HongMing Zhang
YunNing Zhang
机构
[1] China Three Gorges University,College of Electrical Engineering and New Energy
来源
Meccanica | 2022年 / 57卷
关键词
Duffing system; Time delay; Fractional double-damped; Bifurcation; Vibration resonance;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is focused on investigating the bifurcation and vibration resonance problems of fractional double-damping Duffing time delay system driven by external excitation signal with two wildly different frequencies ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Firstly, the approximate expressions of the critical bifurcation point and response amplitude Q at low-frequency ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} are obtained by means of the direct separation of the slow and fast motions. And then corresponding numerical simulation is made to show that it is a good agreement with the theoretical analysis. Next, the influence of system parameters, including internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, high-frequency amplitude F, and time delay size τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, on the vibration resonance is discussed. Some significant results are obtained. If the fractional orders α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are treated as a control parameter, then α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} can induce vibration resonance of the system in three different types when the response amplitude Q changes with the high-frequency amplitude F. If the high-frequency amplitude F is treated as a control parameter, then F can induce vibration resonance of the system as well at some particular points. If the time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is treated as a control parameter, not only can τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} induce three types of vibration resonance, but the response amplitude Q views periodically with τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. In addition, the resonance behaviors of the considered system are more abundant than those in other similar systems since the internal damping order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, external damping order λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, time delay τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and cubic term coefficient β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} are introduced into the system which changes the shapes of the effective potential function.
引用
收藏
页码:999 / 1015
页数:16
相关论文
共 50 条
  • [21] Bifurcation and resonance of fractional cubic nonlinear system
    Xie, Jiaquan
    Zhao, Fuqiang
    He, Dongping
    Shi, Wei
    CHAOS SOLITONS & FRACTALS, 2022, 158
  • [22] Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey
    Alidousti, Javad
    Ghahfarokhi, Mojtaba Mostafavi
    APPLIED MATHEMATICAL MODELLING, 2019, 72 : 385 - 402
  • [23] Nonlinear vibration and of the Duffing oscillator to parametric excitation with time delay feedback
    Y. A. Amer
    A. T. EL-Sayed
    A. A. Kotb
    Nonlinear Dynamics, 2016, 85 : 2497 - 2505
  • [24] Nonlinear vibration and of the Duffing oscillator to parametric excitation with time delay feedback
    Amer, Y. A.
    EL-Sayed, A. T.
    Kotb, A. A.
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2497 - 2505
  • [25] Bifurcation in a nonlinear duffing system with multi-frequency external periodic forces
    Qinsheng B.
    Yushu C.
    Zhiqiang W.
    Applied Mathematics and Mechanics, 1998, 19 (2) : 121 - 128
  • [26] Bifurcation in a nonlinear duffing system with multi-frequency external periodic forces
    Bi, QS
    Chen, YS
    Wu, ZQ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (02) : 121 - 128
  • [27] Bifurcation analysis of the bogie system with time delay and the influence of parameters on the system
    Zhang, Xing
    Liu, Yongqiang
    Yang, Shaopu
    Liao, Yingying
    Wang, Peng
    VEHICLE SYSTEM DYNAMICS, 2024, 62 (07) : 1739 - 1755
  • [28] Stability and bifurcation of a human respiratory system model with time delay
    Shen, QH
    Wei, JJ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2004, 25 (11) : 1277 - 1290
  • [29] Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay
    Wen Shao-Fang
    Shen Yong-Jun
    Yang Shao-Pu
    ACTA PHYSICA SINICA, 2016, 65 (09)
  • [30] Stability and bifurcation of a human respiratory system model with time delay
    Shen Qi-hong
    Wei Jun-jie
    Applied Mathematics and Mechanics, 2004, 25 (11) : 1277 - 1290