Translators of flows by powers of the Gauss curvature

被引:0
|
作者
Muhittin Evren Aydin
Rafael López
机构
[1] Firat University,Department of Mathematics, Faculty of Science
[2] Universidad de Granada,Departamento de Geometría y Topología
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2023年 / 202卷
关键词
-translator; Darboux surface; Surface of revolution; Helicoidal surfaces; Separation of variables; 53C44; 53A15; 35J96;
D O I
暂无
中图分类号
学科分类号
摘要
A Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\alpha}$$\end{document}-translator is a surface in Euclidean space R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} that moves by translations in a spatial direction under the Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\alpha}$$\end{document}-flow, where K is the Gauss curvature and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is a constant. We classify all Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\alpha}$$\end{document}-translators that are rotationally symmetric. In particular, we prove that for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} there is a Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\alpha}$$\end{document}-translator intersecting orthogonally the rotation axis. We also describe all Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\alpha}$$\end{document}-translators invariant by a uniparametric group of helicoidal motions and the translators obtained by separation of variables.
引用
收藏
页码:235 / 251
页数:16
相关论文
共 50 条
  • [1] Translators of flows by powers of the Gauss curvature
    Aydin, Muhittin Evren
    Lopez, Rafael
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 235 - 251
  • [2] Flow by powers of the Gauss curvature
    Andrews, Ben
    Guan, Pengfei
    Ni, Lei
    ADVANCES IN MATHEMATICS, 2016, 299 : 174 - 201
  • [3] Surfaces Moving By Powers of Gauss Curvature
    Andrews, Ben
    Chen, Xuzhong
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2012, 8 (04) : 825 - 834
  • [4] ON HYPERBOLIC GAUSS CURVATURE FLOWS
    Chou, Kai-Seng
    Wo, Weifeng
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 89 (03) : 455 - 485
  • [5] Nonhomogeneous Gauss curvature flows
    Chow, B
    Tsai, DH
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1998, 47 (03) : 965 - 994
  • [6] Nonparametric Hypersurfaces Moving by Powers of Gauss Curvature
    Li, Xiaolong
    Wang, Kui
    MICHIGAN MATHEMATICAL JOURNAL, 2017, 66 (04) : 675 - 682
  • [7] Flow by powers of the Gauss curvature in space forms
    Chen, Min
    Huang, Jiuzhou
    ADVANCES IN MATHEMATICS, 2024, 442
  • [8] α-Gauss Curvature flows with flat sides
    Kim, Lami
    Lee, Ki-ahm
    Rhee, Eunjai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 1172 - 1192
  • [9] Ku-translators of Weingarten type in Gauss curvature flow
    Fei, Wei
    Lin, Ying
    Wang, Ding-yu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [10] Complete noncompact self-similar solutions of Gauss curvature flows - I. Positive powers
    Urbas, J
    MATHEMATISCHE ANNALEN, 1998, 311 (02) : 251 - 274