共 50 条
Translators of flows by powers of the Gauss curvature
被引:0
|作者:
Muhittin Evren Aydin
Rafael López
机构:
[1] Firat University,Department of Mathematics, Faculty of Science
[2] Universidad de Granada,Departamento de Geometría y Topología
来源:
Annali di Matematica Pura ed Applicata (1923 -)
|
2023年
/
202卷
关键词:
-translator;
Darboux surface;
Surface of revolution;
Helicoidal surfaces;
Separation of variables;
53C44;
53A15;
35J96;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A Kα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{\alpha}$$\end{document}-translator is a surface in Euclidean space R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^3$$\end{document} that moves by translations in a spatial direction under the Kα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{\alpha}$$\end{document}-flow, where K is the Gauss curvature and α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document} is a constant. We classify all Kα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{\alpha}$$\end{document}-translators that are rotationally symmetric. In particular, we prove that for each α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document} there is a Kα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{\alpha}$$\end{document}-translator intersecting orthogonally the rotation axis. We also describe all Kα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{\alpha}$$\end{document}-translators invariant by a uniparametric group of helicoidal motions and the translators obtained by separation of variables.
引用
收藏
页码:235 / 251
页数:16
相关论文