Lyapunov type inequalities for even order differential equations with mixed nonlinearities

被引:0
作者
Ravi P Agarwal
Abdullah Özbekler
机构
[1] Texas A&M University-Kingsville,Department of Mathematics
[2] King Abdulaziz University,Department of Mathematics, Faculty of Science
[3] Atilim University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Lyapunov type inequality; mixed nonlinear; sub-linear; super-linear; 34C10;
D O I
暂无
中图分类号
学科分类号
摘要
In the case of oscillatory potentials, we present Lyapunov and Hartman type inequalities for even order differential equations with mixed nonlinearities: x(2n)(t)+(−1)n−1∑i=1mqi(t)|x(t)|αi−1x(t)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{(2n)}(t)+(-1)^{n-1}\sum_{i=1}^{m}q_{i}(t)|x(t)|^{\alpha_{i}-1}x(t)=0$\end{document}, where n,m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n,m\in{\mathbb{N}}$\end{document} and the nonlinearities satisfy 0<α1<⋯<αj<1<αj+1<⋯<αm<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha_{1}<\cdots<\alpha_{j}<1<\alpha_{j+1}<\cdots<\alpha_{m}<2$\end{document}.
引用
收藏
相关论文
共 57 条
[1]  
Lyapunov AM(1907)Probleme général de la stabilité du mouvement Ann. Fac. Sci. Univ. Toulouse 2 27-247
[2]  
Wintner A(1951)On the nonexistence of conjugate points Am. J. Math. 73 368-380
[3]  
Das AM(1975)Green function for J. Math. Anal. Appl. 51 670-677
[4]  
Vatsala AS(2003)- Appl. Math. Comput. 134 293-300
[5]  
Yang X(1945) boundary value problem and an analogue of Hartman’s result Acta Math. 77 127-136
[6]  
Beurling A(1949)On inequalities of Lyapunov type Am. J. Math. 71 67-70
[7]  
Borg G(1997)Un théorème sur les fonctions bornées et uniformément continues sur l’axe réel Proc. Am. Math. Soc. 125 1123-1129
[8]  
Brown RC(1991)On a Lyapunov criterion of stability Fasc. Math. 23 25-41
[9]  
Hinton DB(1973)Opial’s inequality and oscillation of 2nd order equations J. Math. Phys. Sci. 7 163-170
[10]  
Cheng SS(1974)Lyapunov inequalities for differential and difference equations Can. Math. Bull. 17 499-504