Recombination and trapping centers in pure and doped TlBr crystals

被引:0
作者
I. M. Gazizov
V. M. Zaletin
A. V. Govorkov
M. S. Kuznetsov
I. S. Lisitsky
A. Ya. Polyakov
N. B. Smirnov
机构
[1] Institute of Physical-Technical Problems,
[2] Dubna University,undefined
[3] State Research and Project Institute of Rare-Metal Industry GIREDMET,undefined
来源
Semiconductors | 2014年 / 48卷
关键词
AgBr; Cation Vacancy; Anion Vacancy; Trapping Center; Dope Crystal;
D O I
暂无
中图分类号
学科分类号
摘要
TlBr is a promising wide-gap semiconductor for developing γ-radiation detectors. One of the limiting factors in developing the technology of detectors is the lack of experimentally determined trapping and recombination centers. In this paper, a generalized model of the formation and behavior of intrinsic defects in pure and doped TlBr single crystals is presented. The relation of intrinsic defects to growth conditions and electrical properties is determined. The previously obtained temperature dependences of the photoconductivity, the data of current deep level transient spectroscopy and microcathodoluminescence, and the kinetic characteristics of the photoconductivity are used as objects of analysis. It is shown that the compensation of charged centers control the transport properties of charge carriers. In compensated doped TlBr crystals, the product of the mobility and lifetime can reach μτ = 5 × 10−4 cm2 V−1. The energy-level diagram of local levels in pure and doped TlBr crystals is proposed. The ionization energies of major structural and impurity defects in TlBr, i.e., the anion vacancy Va+, cation vacancy Vc−, and Pb2+, O2−, S2− ions, are determined. The energy position of a single anion vacancy Va+ is Ec − 0.22 eV. The energy level of the cation vacancy is Ev + 0.85 eV for a single cation vacancy and Ev + 0.58 eV for a vacancy incorporated into the {Pb2+Vc−}0 complex. The ionization energy of the Pb2+ Coulomb trap is Ec − 0.08 eV in doped TlBr crystals.
引用
收藏
页码:1123 / 1133
页数:10
相关论文
共 84 条
  • [1] Zaletin V M(2010)undefined Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 54 3-undefined
  • [2] Varvaritsa V P(2004)undefined Nucl. Instrum. Methods Phys. Res. A 531 18-undefined
  • [3] Owens A(2009)undefined At. Energy 106 272-undefined
  • [4] Peacock A(2011)undefined Semiconductors 45 636-undefined
  • [5] Zaletin V M(2012)undefined Semiconductors 46 391-undefined
  • [6] Barkov I P(2013)undefined Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 57 4-undefined
  • [7] Gazizov I M(1971)undefined J. Phys. Soc. Jpn. 30 1101-undefined
  • [8] Khrunov V S(1981)undefined Phys. Rev. B 24 575-undefined
  • [9] Lisitsky I S(2010)undefined J. Appl. Phys. 108 053506-undefined
  • [10] Kuznetsov M S(2013)undefined J. Cryst. Growth 379 84-undefined