Factorization and Generalized Roots of Dual Complex Matrices with Rodrigues’ Formula

被引:0
作者
Danail Brezov
机构
[1] UACEG,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2020年 / 30卷
关键词
Dual complex matrices; Line geometry; Matrix roots and powers; Rodrigue’s formula; Polar decomposition; Euler type factorizations; Primary 15A16; 15A23; Secondary 15A66; 20H25; 22E43;
D O I
暂无
中图分类号
学科分类号
摘要
The paper provides an efficient method for obtaining powers and roots of dual complex 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrices based on a far reaching generalization of De Moivre’s formula. We also resolve the case of normal 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} and 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrices using polar decomposition and the direct sum structure of so4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {so}_4$$\end{document}. The compact explicit expressions derived for rational powers formally extend (with loss of periodicity) to real, complex or even dual ones, which allows for defining some classes of transcendent functions of matrices in those cases without referring to infinite series or alternatively, obtain the sum of those series (explicit examples may be found in the text). Moreover, we suggest a factorization procedure for M(n,C[ε])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {M}(n,{\mathbb {C}}[\varepsilon ])$$\end{document}, n≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 4$$\end{document} based on polar decomposition and generalized Euler type procedures recently proposed by the author in the real case. Our approach uses dual biquaternions and their projective version referred to in the Euclidean setting as Rodrigues’ vectors. Restrictions to certain subalgebras yield interesting applications in various fields, such as screw geometry extensively used in classical mechanics and robotics, complex representations of the Lorentz group in relativity and electrodynamics, conformal mappings in computer vision, the physics of scattering processes and probably many others. Here we only provide brief comments on these subjects with several explicit examples to illustrate the method.
引用
收藏
相关论文
共 22 条
[1]  
Brezov D(2018)Projective bivector parametrization of isometries in low dimensions Geom. Integr. Quant. 20 91-104
[2]  
Brezov D(2017)Higher-dimensional representations of Adv. Appl. Clifford Algebras 27 2375-2392
[3]  
Brezov D(2014) and its real forms via Plücker embedding AIP Conf. Proc. 1631 282-291
[4]  
Mladenova C(2014)Generalized Euler decompositions of some six-dimensional lie groups J. Geom. Symmetry Phys. 33 47-78
[5]  
Mladenov I(2014)A decoupled solution to the generalized Euler decomposition problem in CR Acad. Bulg. Sci. 67 1337-1344
[6]  
Brezov D(2013) and AIP Conf. Proc. 1561 275-288
[7]  
Mladenova C(1998)On the decomposition of the Infinitesimal (pseudo-)rotations Appl. Math. Lett. 11 33-35
[8]  
Mladenov I(2014)Some new results on three-dimensional rotations and pseudo-rotations Mech. Mach. Theory 74 390-412
[9]  
Brezov D(2019)De Moivre’s formula for quaternions Adv. Appl. Clifford Algebras 29 625-638
[10]  
Mladenova C(2012)Dual tensors based solutions for rigid body motion parameterization IEEE Trans. Robot. 28 728-733