On edge-transitive metacyclic covers of cubic arc-transitive graphs of order twice a prime

被引:0
作者
Xue Wang
Jin-Xin Zhou
Jaeun Lee
机构
[1] Beijing Jiaotong University,School of Mathematics and Statistics
[2] Yeungnam University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2024年 / 59卷
关键词
Edge-transitive graph; Arc-transitive graph; Metacyclic ; -group; Normal cover; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime, and let Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document} be a connected cubic arc-transitive graph of order 2p. In the literature, a lot of works have been done on the classification of edge-transitive normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document} for specific p≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 7$$\end{document}. An interesting problem is to generalize these results to an arbitrary prime p. In 2014, Zhou and Feng classified edge-transitive cyclic or dihedral normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document} for each prime p. In our previous work, we classified all edge-transitive N-normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document}, where p is a prime and N is a metacyclic 2-group. In this paper, we give a classification of edge-transitive N-normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document}, where p≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 5$$\end{document} is a prime and N is a metacyclic group of odd prime power order.
引用
收藏
页码:111 / 129
页数:18
相关论文
共 60 条
[1]  
Blackburn N (1961)Generalizations of certain elementary theorems on Proc. Lond. Math. Soc. 3 1-22
[2]  
Conder M(2013)-groups J. Algebra 387 215-242
[3]  
Ma JC(2013)Arc-transitive abelian regular covers of cubic graphs J. Algebra 387 243-267
[4]  
Conder M(2020)Arc-transitive abelian regular covers of the Heawood graph J. Comb. Theory B 145 264-306
[5]  
Ma JC(1987)Edge-transitive bi-Cayley graphs J. Comb. Theory B 42 196-211
[6]  
Conder M(2000)On weakly symmetric graphs of order twice a prime Comm. Algebra 28 2685-2715
[7]  
Zhou J-X(2004)A classification of semisymmetric graphs of order 2pq J. Graph Theory 45 101-112
[8]  
Feng Y-Q(2006)-Regular cubic graphs as coverings of the complete bipartite graph Sci. China Ser. A 49 300-319
[9]  
Zhang M-M(2007)Classifying cubic symmetric graphs of order J. Comb. Theory B 97 627-646
[10]  
Cheng Y(2015) or Eur. J. Combin. 45 1-11