Leptin Densities in Amenable Groups

被引:0
|
作者
Felix Pogorzelski
Christoph Richard
Nicolae Strungaru
机构
[1] Universität Leipzig,Institut für Mathematik
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg,Department für Mathematik
[3] MacEwan University,Department of Mathematical Sciences
[4] Institute of Mathematics “Simon Stoilow”,undefined
来源
Journal of Fourier Analysis and Applications | 2022年 / 28卷
关键词
Amenability; Følner net; Beurling density; Banach density; Model set; Almost periodicity; 43A07; 52C23; 43A60; 78A45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a positive Borel measure on a locally compact group. We define a notion of uniform density for such a measure, which is based on a group invariant introduced by Leptin in 1966. We then restrict to unimodular amenable groups and to translation bounded measures. In that case our density notion coincides with the well-known Beurling density from Fourier analysis, also known as Banach density from dynamical systems theory. We use Leptin densities for a geometric proof of the model set density formula, which expresses the density of a uniform regular model set in terms of the volume of its window, and for a proof of uniform mean almost periodicity of such model sets.
引用
收藏
相关论文
共 50 条
  • [41] B(lp) IS NEVER AMENABLE
    Runde, Volker
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (04) : 1175 - 1185
  • [42] φ- BIPROJECTIVE AND (φ,ψ)- AMENABLE BANACH ALGEBRAS
    Ghorbani, Z.
    Baradaran, J.
    MATHEMATICA MONTISNIGRI, 2019, 44 : 5 - 14
  • [43] AN ERGODIC PROPERTY OF AMENABLE HYPERGROUPS
    Pavel, Liliana
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01): : 123 - 129
  • [44] Reiter’s condition for amenable hypergroups
    R. Lasser
    M. Skantharajah
    Monatshefte für Mathematik, 2011, 163 : 327 - 338
  • [45] Hilbert C*-modules and amenable actions
    Douglas, Ronald G.
    Nowak, Piotr W.
    STUDIA MATHEMATICA, 2010, 199 (02) : 185 - 197
  • [46] Reiter's condition for amenable hypergroups
    Lasser, R.
    Skantharajah, M.
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (03): : 327 - 338
  • [47] Optimal strategies for a game on amenable semigroups
    Valerio Capraro
    Kent E. Morrison
    International Journal of Game Theory, 2013, 42 : 917 - 929
  • [48] Optimal strategies for a game on amenable semigroups
    Capraro, Valerio
    Morrison, Kent E.
    INTERNATIONAL JOURNAL OF GAME THEORY, 2013, 42 (04) : 917 - 929
  • [49] The Structure of φ-Module Amenable Banach Algebras
    Bami, Mahmood Lashkarizadeh
    Valaei, Mohammad
    Amini, Massoud
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] A CHARACTERIZATION OF σ-EXTREMELY AMENABLE SEMITOPOLOGICAL SEMIGROUPS
    Salame, Khadime
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (08) : 1443 - 1458