Leptin Densities in Amenable Groups

被引:0
|
作者
Felix Pogorzelski
Christoph Richard
Nicolae Strungaru
机构
[1] Universität Leipzig,Institut für Mathematik
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg,Department für Mathematik
[3] MacEwan University,Department of Mathematical Sciences
[4] Institute of Mathematics “Simon Stoilow”,undefined
来源
Journal of Fourier Analysis and Applications | 2022年 / 28卷
关键词
Amenability; Følner net; Beurling density; Banach density; Model set; Almost periodicity; 43A07; 52C23; 43A60; 78A45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a positive Borel measure on a locally compact group. We define a notion of uniform density for such a measure, which is based on a group invariant introduced by Leptin in 1966. We then restrict to unimodular amenable groups and to translation bounded measures. In that case our density notion coincides with the well-known Beurling density from Fourier analysis, also known as Banach density from dynamical systems theory. We use Leptin densities for a geometric proof of the model set density formula, which expresses the density of a uniform regular model set in terms of the volume of its window, and for a proof of uniform mean almost periodicity of such model sets.
引用
收藏
相关论文
共 50 条
  • [1] Leptin Densities in Amenable Groups
    Pogorzelski, Felix
    Richard, Christoph
    Strungaru, Nicolae
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [2] Amenable groups without finitely presented amenable covers
    Benli, Mustafa Goekhan
    Grigorchuk, Rostislav
    de la Harpe, Pierre
    BULLETIN OF MATHEMATICAL SCIENCES, 2013, 3 (01) : 73 - 131
  • [3] Amenable discrete quantum groups
    Tomatsu, Reiji
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 949 - 964
  • [4] γ-Bounded representations of amenable groups
    Le Merdy, Christian
    ADVANCES IN MATHEMATICS, 2010, 224 (04) : 1641 - 1671
  • [5] On sofic approximations of non amenable groups
    Hayes, Ben
    Elayavalli, Srivatsav Kunnawalkam
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)
  • [6] Uniformly finite homology and amenable groups
    Blank, Matthias
    Diana, Francesca
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01): : 467 - 492
  • [7] Sumset phenomenon in countable amenable groups
    Beiglboeck, Mathias
    Bergelson, Vitaly
    Fish, Alexander
    ADVANCES IN MATHEMATICS, 2010, 223 (02) : 416 - 432
  • [8] On Elementary Amenable Bounded Automata Groups
    Juschenko, Kate
    Steinberg, Benjamin
    Wesolek, Phillip
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (06) : 2479 - 2526
  • [9] Extensions of amenable groups by recurrent groupoids
    Juschenko, Kate
    Nekrashevych, Volodymyr
    de la Salle, Mikael
    INVENTIONES MATHEMATICAE, 2016, 206 (03) : 837 - 867
  • [10] Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups
    McKee, Andrew
    Pourshahami, Reyhaneh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (02): : 381 - 399